Global Information Lookup Global Information

Viral envelope information


Schematic of a Cytomegalovirus, coat = envelope

A viral envelope is the outermost layer of many types of viruses.[1] It protects the genetic material in their life cycle when traveling between host cells. Not all viruses have envelopes. A viral envelope protein or E protein is a protein in the envelope, which may be acquired by the capsid from an infected host cell.

Numerous human pathogenic viruses in circulation are encased in lipid bilayers, and they infect their target cells by causing the viral envelope and cell membrane to fuse. Although there are effective vaccines against some of these viruses, there is no preventative or curative medicine for the majority of them. In most cases, the known vaccines operate by inducing antibodies that prevent the pathogen from entering cells. This happens in the case of enveloped viruses when the antibodies bind to the viral envelope proteins.

The membrane fusion event that triggers viral entrance is caused by the viral fusion protein. Many enveloped viruses only have one protein visible on the surface of the particle, which is required for both mediating adhesion to the cell surface and for the subsequent membrane fusion process. To create potentially protective vaccines for human pathogenic enveloped viruses for which there is currently no vaccine, it is essential to comprehend how antibodies interact with viral envelope proteins, particularly with the fusion protein, and how antibodies neutralize viruses.

Enveloped viruses enter cells by joining a cellular membrane to their lipid bilayer membrane. Priming by proteolytic processing, either of the fusion protein or of a companion protein, is necessary for the majority of viral fusion proteins. The priming stage then gets the fusion protein ready for triggering by the processes that go along with attachment and uptake, which frequently happens during transport of the fusion protein to the cell surface but may also happen extracellularly. So far, structural studies have revealed two kinds of viral fusion proteins. These proteins are believed to catalyze the same mechanism in both situations, resulting in the fusing of two bilayers. In other words, these proteins operate as enzymes, which while having various structural variations catalyze the same chemical reaction.[2]

The envelopes are typically derived from portions of the host cell membranes (phospholipids and proteins), but include some viral glycoproteins. One of the main parts of human pathogenic viruses is glycoprotein. They have been shown to play significant roles in immunity and infection.[3] Viral glycoproteins, a new class of cellular inhibitory proteins has been discovered. These include the E3 ubiquitin ligases of the membrane-associated RING-CH (MARCH) family, which among other things, inhibits the expression of cell surface proteins implicated in adaptive immunity.[4] Being made up mostly of host membrane, the viral envelope can also have the proteins associated with the host cell within their membrane after budding.[5] Many enveloped viruses mature by budding at the plasma membrane, which allows them to be discharged from infected cells. During this procedure, viral transmembrane proteins, also known as spike proteins, are integrated into membrane vesicles containing components of the viral core (capsid).

For a very long time, it was thought that the spike proteins, which are necessary for infectivity, were directly incorporated into the viral core through their cytoplasmic domains. Recent research suggests that while such direct interactions may be what causes the budding of alphaviruses, this may not be the case for retroviruses and negative strand RNA viruses. These viruses can form bud particles even in the absence of spike proteins by relying only on viral core components. The spike proteins can occasionally be produced as virus-like particles without the viral core. Therefore, optimal budding and release may be dependent on a coordinated "push-and-pull" action between core and spike, where oligomerization of both components is essential.[6]

They may help viruses avoid the host immune system. TAM receptor tyrosine kinases increase phagocytic clearance of apoptotic cells and inhibit immunological responses brought on by Toll-like receptors and type I interferons (IFNs) when they are activated by the ligands Gas6 and Protein S. The phospholipid phosphatidylserine may be seen on the membranes of several enveloped viruses, which they employ to bind Gas6 and Protein S to activate TAM receptors.

Ligand-coated viruses stimulate type I IFN signaling, activate TAM receptors on dendritic cells (DCs), and suppress type II interferon signaling to circumvent host defenses and advance infection.TAM-deficient DCs exhibit type I IFN responses that are more pronounced than those of wild-type cells in response to viral exposure. As a result, flaviviruses and pseudo typed retroviruses have a harder time infecting TAM-deficient DCs, albeit infection can be brought back by type I IFN antibodies. A TAM kinase inhibitor, meanwhile, prevents infection of wild-type DCs. TAM receptors, which are potential targets for therapy, are thereby activated by viruses to reduce type I IFN signaling.[7] Glycoproteins on the surface of the envelope serve to identify and bind to receptor sites on the host's membrane. The particular set of viral proteins are engaged in a series of structural changes. When these changes are set/finished, there is then and only then, fusion with the host membrane.[8] These glycoproteins mediate the interaction between virion and host cell, typically initiating the fusion between the viral envelope and the host's cellular membrane.[9] In some cases, the virus with an envelope will form an endosome within the host cell.[10] There are three main types of viral glycoproteins: Envelope proteins, membrane proteins, and spike proteins (E, M, and S).[11] The viral envelope then fuses with the host's membrane, allowing the capsid and viral genome to enter and infect the host.[citation needed]

All enveloped viruses also have a capsid, another protein layer, between the envelope and the genome.[1] The virus wraps its delicate nucleic acid with a protein shell known as the capsid, from the Latin capsa, meaning "box," in order to shield it from this hostile environment. Similar to how numerous bricks come together to form a wall, the capsid is made up of one or more distinct protein types that repeatedly repeat to form the whole capsid. This repetitive pattern creates a robust but rather flexible capsid. The nucleic acid inside the capsid is appropriately protected by its modest size and physical difficulty in opening it. The nucleocapsid of the virion is made up of the nucleic acid and the capsid. Remember that the genomes of most viruses are very small. Genes code for instructions to make proteins, so small genomes cannot code for many proteins. Therefore, the virion capsid consists of one or only a few proteins that repeat over and over  to form the structure. The viral nucleic acid  would be physically too large to fit inside the capsid if it consisted of more than  a few proteins.[12] The capsid, having a focused role of protecting the genome in addition to immune recognition evasion.[13] The viral capsid is known for its protection of RNA before it is inserted into the host cell, unlike the viral envelope which protects the protein capsid.[14]

The cell from which a virus buds often dies or is weakened, and sheds more viral particles for an extended period. The lipid bilayer envelope of these viruses is relatively sensitive to desiccation, heat, and amphiphiles such as soap and detergents, therefore these viruses are easier to sterilize than non-enveloped viruses, have limited survival outside host environments, and typically must transfer directly from host to host. Viral envelope persistence, whether it be enveloped or naked, are a factor in determining longevity of a virus on inanimate surfaces.[15] Enveloped viruses possess great adaptability and can change in a short time in order to evade the immune system. Enveloped viruses can cause persistent infections.[citation needed]

Vaccination against enveloped viruses can function by neutralizing the glycoprotein activity with antibodies.[16]

  1. ^ a b HURLBERT, RONALD E. Fundamentals of Microbiology 102. Chapter #11: Viruses. Archived from the original on 2008-11-10. Retrieved 2008-11-07.
  2. ^ Rey, Felix A.; Lok, Shee-Mei (2018-03-08). "Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines". Cell. 172 (6): 1319–1334. doi:10.1016/j.cell.2018.02.054. ISSN 0092-8674. PMC 7112304. PMID 29522750. S2CID 3775608.
  3. ^ Banerjee, Nilotpal; Mukhopadhyay, Sumi (March 2016). "Viral glycoproteins: biological role and application in diagnosis". Virusdisease. 27 (1): 1–11. doi:10.1007/s13337-015-0293-5. ISSN 2347-3584. PMC 4758313. PMID 26925438.
  4. ^ Lun, Cheng Man; Waheed, Abdul A.; Majadly, Ahlam; Powell, Nicole; Freed, Eric O. (2021-03-16). "Mechanism of Viral Glycoprotein Targeting by Membrane-Associated RING-CH Proteins". mBio. 12 (2): e00219–21. doi:10.1128/mBio.00219-21. ISSN 2150-7511. PMC 8092221. PMID 33727347.
  5. ^ Gelderblom HR. Structure and Classification of Viruses. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 41. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8174/
  6. ^ Cadd, T. L.; Skoging, U.; Liljeström, P. (November 1997). "Budding of enveloped viruses from the plasma membrane". BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 19 (11): 993–1000. doi:10.1002/bies.950191109. ISSN 0265-9247. PMC 7161837. PMID 9394621.
  7. ^ Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D.; Shrestha, Bimmi; Rothlin, Carla V.; Naughton, John; Diamond, Michael S.; Lemke, Greg; Young, John A.T. (2013-08-14). "Enveloped Viruses Disable Innate Immune Responses in Dendritic Cells by Direct Activation of TAM Receptors". Cell Host & Microbe. 14 (2): 136–147. doi:10.1016/j.chom.2013.07.005. ISSN 1931-3128. PMC 3779433. PMID 23954153.
  8. ^ Benhaim, Mark A.; Lee, Kelly K. (2020-04-08). "New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes". Viruses. 12 (4): E413. doi:10.3390/v12040413. ISSN 1999-4915. PMC 7232462. PMID 32276357.
  9. ^ Navaratnarajah, C.K. et al. “Assembly of Viruses: Enveloped Particles.” Encyclopedia of Virology (2008): 193–200. doi:10.1016/B978-012374410-4.00667-1
  10. ^ White, Judith M, and Gary R Whittaker. “Fusion of Enveloped Viruses in Endosomes.” Traffic vol. 17,6 (2016): 593-614. doi:10.1111/tra.12389
  11. ^ Banerjee, Nilotpal, and Sumi Mukhopadhyay. “Viral glycoproteins: biological role and application in diagnosis.” Virusdisease vol. 27,1 (2016): 1-11. doi:10.1007/s13337-015-0293-5
  12. ^ Louten, Jennifer (2016). "Virus Structure and Classification". Essential Human Virology: 19–29. doi:10.1016/B978-0-12-800947-5.00002-8. ISBN 9780128009475. PMC 7150055.
  13. ^ Stuart, David I.; Ren, Jingshan; Wang, Xiangxi; Rao, Zihe; Fry, Elizabeth E. (May 2019). "Hepatitis A Virus Capsid Structure". Cold Spring Harbor Perspectives in Medicine. 9 (5): a031807. doi:10.1101/cshperspect.a031807. ISSN 2157-1422. PMC 6496327. PMID 30037986.
  14. ^ Cliver, Dean O. (2009). "Capsid and Infectivity in Virus Detection". Food and Environmental Virology. 1 (3): 123–128. doi:10.1007/s12560-009-9020-y. ISSN 1867-0334. PMC 2837222. PMID 20234879.
  15. ^ Firquet, Swan; Beaujard, Sophie; Lobert, Pierre-Emmanuel; Sané, Famara; Caloone, Delphine; Izard, Daniel; Hober, Didier (June 2015). "Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces". Microbes and Environments. 30 (2): 140–144. doi:10.1264/jsme2.ME14145. ISSN 1342-6311. PMC 4462923. PMID 25843687.
  16. ^ Rey, Felix A.; Lok, Shee-Mei (8 March 2018). "Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines". Cell. 172 (6): 1319–1334. doi:10.1016/j.cell.2018.02.054. PMC 7112304. PMID 29522750.

and 28 Related for: Viral envelope information

Request time (Page generated in 0.8346 seconds.)

Viral envelope

Last Update:

A viral envelope is the outermost layer of many types of viruses. It protects the genetic material in their life cycle when traveling between host cells...

Word Count : 1972

Viral protein

Last Update:

components for the capsid and the envelope of the virus. The genetic material of a virus is stored within a viral protein structure called the capsid...

Word Count : 1673

HIV

Last Update:

into the viral envelope. The envelope protein, encoded by the HIV env gene, allows the virus to attach to target cells and fuse the viral envelope with the...

Word Count : 14349

Viral shedding

Last Update:

to create the virus' own viral envelope— into extracellular space is most effective for viruses that require their own envelope. These include such viruses...

Word Count : 895

Spike protein

Last Update:

considered a synonym for viral envelope.: 362  Spikes or peplomers are usually rod- or club-shaped projections from the viral surface. Spike proteins are...

Word Count : 1091

Virus

Last Update:

gaining an outer lipid bilayer known as a viral envelope. This membrane is studded with proteins coded for by the viral genome and host genome; the lipid membrane...

Word Count : 18116

Viral entry

Last Update:

which holds a receptor that the virus can bind to. The receptors on the viral envelope effectively become connected to complementary receptors on the cell...

Word Count : 1820

Structure and genome of HIV

Last Update:

patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two...

Word Count : 3936

Herpes simplex virus

Last Update:

membrane. The envelope covering the virus particle then fuses with the cell membrane, creating a pore through which the contents of the viral envelope enters...

Word Count : 7293

West Nile virus

Last Update:

particular, plays an integral part in WNV entering a host cell. The two viral envelope proteins, E and M, are inserted into the membrane. The RNA genome is...

Word Count : 5008

Viral replication

Last Update:

Non-endocytic routes: the process by which viral particles are released into the cell by fusion of the extracellular viral envelope and the membrane of the host cell...

Word Count : 2497

Envelope glycoprotein GP120

Last Update:

to its termini and a bridging sheet. Gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein,...

Word Count : 2547

Influenza A virus

Last Update:

defined by the combination of the antigenic H and N proteins in the viral envelope; for example, "H1N1" designates an IAV subtype that has a type-1 hemagglutinin...

Word Count : 5312

Capsid

Last Update:

that the capsid is coated with a lipid membrane known as the viral envelope. The envelope is acquired by the capsid from an intracellular membrane in the...

Word Count : 2554

Coronavirus

Last Update:

when it is outside the host cell. The viral envelope is made up of a lipid bilayer in which the membrane (M), envelope (E) and spike (S) structural proteins...

Word Count : 10570

Pseudotyping

Last Update:

Pseudotyping is the process of producing viruses or viral vectors in combination with foreign viral envelope proteins. The result is a pseudotyped virus particle...

Word Count : 728

Rubella virus

Last Update:

membrane (viral envelope), derived from the host cell membrane. There are prominent "spikes" (projections) of 6 nm composed of the viral envelope proteins...

Word Count : 1706

Influenza

Last Update:

the viral envelope that are required for viral entry and exit. Influenza B viruses contain a surface protein named NB that is anchored in the envelope, but...

Word Count : 12961

Coronavirus envelope protein

Last Update:

coronavirus viral envelope. Studies in different coronaviruses have reached different conclusions about whether E is essential to viral replication....

Word Count : 1897

Helper virus

Last Update:

replicate. Helper viruses are also commonly used to replicate and spread viral vectors for gene expression and gene therapy. Helper dependent virus Virophage...

Word Count : 89

Mumps virus

Last Update:

The genome is encased by a capsid that is in turn surrounded by a viral envelope. MuV particles, called virions, are pleomorphic in shape and vary in...

Word Count : 2850

Cell envelope

Last Update:

The cell envelope comprises the inner cell membrane and the cell wall of a bacterium. In Gram-negative bacteria an outer membrane is also included. This...

Word Count : 1169

Paramyxoviridae

Last Update:

as a trimer, and mediates cell entry by inducing fusion between the viral envelope and the cell membrane by class I fusion. One of the defining characteristics...

Word Count : 2031

Norovirus

Last Update:

but are less effective than hand-washing, as norovirus lacks a lipid viral envelope. Surfaces where norovirus particles may be present can be sanitised...

Word Count : 6279

Lentiviral vector in gene therapy

Last Update:

genome with a reverse transcriptase enzyme. Lentiviruses also have a viral envelope with protruding glycoproteins that aid in attachment to the host cell's...

Word Count : 3448

Orthomyxoviridae

Last Update:

infects pigs and cattle. The influenzavirus virion is pleomorphic; the viral envelope can occur in spherical and filamentous forms. In general, the virus's...

Word Count : 4234

Viral vector

Last Update:

Viral vectors are modified viruses designed to deliver genetic material into cells. This process can be performed inside an organism or in cell culture...

Word Count : 5530

Measles morbillivirus

Last Update:

direct contact with secretions. The measles virus has two envelope glycoproteins on the viral surface – hemagglutinin (H) and membrane fusion protein (F)...

Word Count : 1907

PDF Search Engine © AllGlobal.net