Global Information Lookup Global Information

Chemical vapor deposition of ruthenium information


Chemical vapor deposition of ruthenium is a method to deposit thin layers of ruthenium on substrates by Chemical vapor deposition (CVD).

A unique challenge arises in trying to grow impurity-free films of a catalyst in Chemical vapor deposition (CVD). Ruthenium metal activates C–H and C–C bonds, that aids C–H and C–C bond scission. This creates a potential catalytic decomposition path for all metal-organic CVD precursors that is likely to lead to significant carbon incorporation. Platinum, a chemically similar catalyst, catalyzes dehydrogenation of five- and six-member cyclic hydrocarbons into benzene.[1] The d-bands of ruthenium lie higher than those in platinum, generally predicting stronger ruthenium–adsorbate bonds than on platinum. Therefore, it is likely that ruthenium also catalyzes dehydrogenation of five- and six-member hydrocarbon rings to benzene. Benzene dehydrogenates further on ruthenium surfaces into hydrocarbon fragments similar to those formed by acetylene and ethene on ruthenium surfaces.[2] In addition to benzene, acetylene and ethene, pyridine also decomposes on ruthenium surfaces, leaving bound fragments on the surface. Ruthenium is unusually well studied in the surface science and catalysis literature due to its industrial importance as a catalyst. There are many studies of individual molecular behavior on ruthenium in surface science. However, understanding the behavior of each ligand on its own is not equivalent to understanding their behavior when co-adsorbed with each other and with the precursor. While there is no significant pressure difference between surface science studies and CVD, there is often a temperature gap between temperatures reported in surface science studies and CVD growth temperatures. Despite these complications, ruthenium is a promising candidate for understanding chemical vapor deposition and precursor design of catalytic films.

Ligands that are stable compounds in their own right, short ligand–ruthenium contact times and moderate substrate temperatures help minimize unwanted ligand decomposition on the surface.[3][4] The C–H and C–C bond activation is temperature-dependent. Product desorption is also temperature-dependent, if the products are not bound to the ruthenium surface. This suggests that there is some optimum temperature, at which most independently stable ligands have just enough thermal energy to desorb from the ruthenium film surface before C–H activation can occur. For example, benzene starts decomposing on ruthenium at 87 °C. However, the dehydrogenation reaction does not go to fragments until 277 °C, and compete fragmentation is not seen at low surface coverage. This suggests that provided adsorbed benzene molecules are not close to one another on the surface and temperatures are below 277 °C, the vast majority of benzene molecules may not contribute to carbon incorporation in films. Therefore, a key consideration in growing CVD films of catalytic metals such as ruthenium is combining molecule design and the kinetic aspects of growth in a favorable way.

Before metal-organic precursors were explored, triruthenium dodecacarbonyl (Ru3(CO)12) was tested as a CVD precursor.[5][6] While this precursor gives good-quality films, the vapor pressure is poor, complicating its practical use in a CVD process. Ruthenocene[7][8] and bis(ethylcyclopentadienyl)ruthenium(II)[9][10][11][12] and beta-diketonate ruthenium(II) compounds[13][14][15] have been fairly extensively explored. Although these precursors also can give pure films of low resistivity when reacted with oxygen, the growth rates are very low or not reported. One high-growth precursor, cyclopentadienyl-propylcyclopentadienylruthenium(II) (RuCp(i-PrCp)), has been identified.[16] (RuCp(i-PrCp) has achieved growth rates of 7.5 nm/min to 20 nm/min as well as low resistivities. However, it does not nucleate on oxides[citation needed], ruling out its use in all applications but copper interconnect layers.

A new zero-valent, single-source precursor design paradigm was launched with (1,5-cyclooctadiene)(toluene)Ru(0) ((1,5-COD)(toluene)Ru)[17] and (1,3-cyclohexadiene)(benzene)Ru(0) ((1,3-CHD)(benzene)Ru),[3] also independently tested[18] Using (1,5-COD)(toluene)Ru; it was found that C–H bonds were readily activated in 1,5-COD. Although carbon incorporation levels were low (1–3%), the growth rates were only around 0.28 nm/min at best. Using (1,3-CHD)(benzene)Ru, the 1,3-CHD was dehydrogenated to benzene as expected, but the large variety of possible surface reactions involving the two ligands resulted in a narrow process window in which carbon concentrations were low.

  1. ^ Manner, W. L; Girolami, G. S; Nuzzo, R. G (1998). "Sequential Dehydrogenation of Unsaturated Cyclic C5 and C6 Hydrocarbons on Pt(111)". J. Phys. Chem. B. 102 (50): 10295–10306. doi:10.1021/jp9830272.
  2. ^ Jakob, P; Menzel, D. (1988). "The adsorption of benzene on Ru(001)". Surface Science. 210 (3): 503–530. Bibcode:1988SurSc.201..503J. doi:10.1016/0039-6028(88)90500-6.
  3. ^ a b Schneider, A; Popovska, N; Jipa, I; Atakan, B; Siddiqi, M. A; Siddiqui, R; Zenneck, U (2007). "Minimizing the carbon content of thin ruthenium films by MOCVD precursor complex design and process control". Chemical Vapor Deposition. 13 (8): 389–395. doi:10.1002/cvde.200606582.
  4. ^ Schneider, A; Popovska, N; Holzmann, F; Gerhard, H; Topf, C; Zenneck, U (2005). "(1,5-Cyclooctadiene)(toluene)ruthenium(0): A Novel Precursor for the MOCVD of Thin Ruthenium Films". Chemical Vapor Deposition. 11 (2): 99–105. doi:10.1002/cvde.200406315.
  5. ^ Green, M. L; Gross, M. L; Papa, L. E; Schnoes, K. J; Brasen, D (1985). "Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films". Journal of the Electrochemical Society. 132 (11): 2677. doi:10.1149/1.2113647.
  6. ^ Wang, Q; Ekerdt, J. G; Gay, D; Sun, Y.-M; White, J. M (2004). "Low-temperature chemical vapor deposition and scaling limit of ultrathin Ru films". Applied Physics Letters. 84 (8): 1380–1382. Bibcode:2004ApPhL..84.1380W. doi:10.1063/1.1650044.
  7. ^ Trent, D. E; Paris, B; Krause, H. H (1964). "Vapor Deposition of Pure Ruthenium Metal from Ruthenocene". Inorg. Chem. 3 (7): 1057–1058. doi:10.1021/ic50017a041.
  8. ^ Park, S. E; Kim, H. M; Kim, K. B; Min, S. H (2000). "Metallorganic chemical vapor deposition of Ru and RuO
    2
    using ruthenocene precursor and oxygen gas". Journal of the Electrochemical Society. 147 (1): 203–209. doi:10.1149/1.1393175.
  9. ^ Aoyama, T; Eguchi, K (1999). "Ruthenium films prepared by liquid source chemical vapor deposition using bis-(ethylcyclopentadienyl)ruthenium". Japanese Journal of Applied Physics. 38 (10A): 1134–6. Bibcode:1999JaJAP..38L1134A. doi:10.1143/JJAP.38.L1134. S2CID 94820569.
  10. ^ Kang, S. Y; Choi, K. H; Lee, S. K; Hwang, C. S; Kim, H. J (2000). "Thermodynamic Calculations and Metallorganic Chemical Vapor Deposition of Ruthenium Thin Films Using Bis(ethyl-pi-cyclopentadienyl)Ru for Memory Applications". Journal of the Electrochemical Society. 147 (3): 1161–7. doi:10.1149/1.1393330.
  11. ^ Matsui, Y; Hiratani, M; Nabatame, T; Shimamoto, Y; Kimura, S (2002). "Characteristics of Ruthenium Films Prepared by Chemical Vapor Deposition Using Bis(ethylcyclopentadienyl)ruthenium Precursor". Electrochemical and Solid-State Letters. 5 (1): C18. doi:10.1149/1.1425263.
  12. ^ Nabatame, T; Hiratani, M; Kadoshima, M; Shimamoto, Y; Matsui, Y; Ohji, Y; Asano, I; Fujiwara, T; Suzuki, T (2000). "Properties of ruthenium films prepared by liquid source metalorganic chemical vapor deposition using Ru(EtCp)
    2
    with tetrahydrofuran solvent". Japanese Journal of Applied Physics. 39 (11B): 1188–90. Bibcode:2000JaJAP..39L1188N. doi:10.1143/JJAP.39.L1188. S2CID 123531834.
  13. ^ Kadoshima, M; Nabatame, T; Hiratani, M; Nakamura, Y; Asano, I; Suzuki, T (2002). "Ruthenium Films Prepared by Liquid Source Metalorganic Chemical Vapor Deposition Using Ru(dpm)
    3
    Dissolved with Tetrahydrofuran Solvent". Japanese Journal of Applied Physics. 41 (3B): L347–L350. Bibcode:2002JaJAP..41L.347K. doi:10.1143/JJAP.41.L347. S2CID 92870343.
  14. ^ Lai, Y.-H; Chen, Y.-L; Chi, Y; Liu, C.-S; Carty, A. J; Peng, S.-M; Lee, G.-H (2003). "Deposition of Ru and RuO
    2
    thin films employing dicarbonyl bis-diketonate ruthenium complexes as CVD source reagents". Journal of Materials Chemistry. 13 (8): 1999–2006. CiteSeerX 10.1.1.652.7750. doi:10.1039/b300517h.
  15. ^ Lee, J.-H; Kim, J.-Y; Rhee, S.-W; Yang, D; Kim, D.-H; Yang, C.-H; Han, Y.-K; Hwang, C.-J (2000). "Chemical vapor deposition of Ru thin films by direct liquid injection of Ru(OD)
    3
    (OD=octanedionate)". Journal of Vacuum Science and Technology A. 18 (5): 2400–2403. doi:10.1116/1.1289693.
  16. ^ Kang, S. Y; Lim, H. J; Hwang, C. S; Kim, H. J (2002). "Metallorganic chemical vapor deposition of Ru films using cyclopentadienyl-propylcyclopentadienylruthenium(II) and oxygen". Journal of the Electrochemical Society. 149 (6): C317–C323. doi:10.1149/1.1471547.
  17. ^ Schneider, A; Popovska, N; Holzmann, F; Gerhard, H; Topf, C; Zenneck, U. (2005). "[(1,5-Cyclooctadiene)(toluene)ruthenium(0)]: A Novel Precursor for the MOCVD of Thin Ruthenium Films". Chemical Vapor Deposition. 11 (2): 99–105. doi:10.1002/cvde.200406315.
  18. ^ Choi, J; Choi, Y; Hong, J; Tian, H; Roh, J.-S; Kim, Y; Chung, T.-M; Woo Oh, Y; et al. (2002). "Composition and Electrical Properties of Metallic Ru Thin Films Deposited Using Ru(C6H6)(C6H8) Precursor". Japanese Journal of Applied Physics. 41 (11B): 6852–6856. Bibcode:2002JaJAP..41.6852C. doi:10.1143/JJAP.41.6852. S2CID 54965193.

and 25 Related for: Chemical vapor deposition of ruthenium information

Request time (Page generated in 0.9602 seconds.)

Chemical vapor deposition of ruthenium

Last Update:

Chemical vapor deposition of ruthenium is a method to deposit thin layers of ruthenium on substrates by Chemical vapor deposition (CVD). A unique challenge...

Word Count : 1504

Ruthenium

Last Update:

Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table...

Word Count : 5736

Atomic layer deposition

Last Update:

contrast to chemical vapor deposition, the precursors are never present simultaneously in the reactor, but they are inserted as a series of sequential...

Word Count : 7388

Haber process

Last Update:

BaCeO3−xNyHz, that works at lower temperature and without costly ruthenium. The major source of hydrogen is methane. Steam reforming extracts hydrogen from...

Word Count : 8145

Graphene production techniques

Last Update:

to the free standing graphene. Chemical vapor deposition (CVD) is a common form of epitaxy. The process of deposition of solid material onto a heated substrate...

Word Count : 10670

Graphene

Last Update:

with chemical vapor deposition (CVD). Furthermore, superlattices of graphene-hBN are ideal model systems for the realization and understanding of coherent...

Word Count : 27661

Tungsten

Last Update:

manufactured through powder metallurgy, spark plasma sintering, chemical vapor deposition, hot isostatic pressing, and thermoplastic routes. A more flexible...

Word Count : 8834

Boron nitride

Last Update:

Ion beam deposition, plasma-enhanced chemical vapor deposition, pulsed laser deposition, reactive sputtering, and other physical vapor deposition methods...

Word Count : 7511

Carbon nanotube supported catalyst

Last Update:

studies of adsorption and precipitation chemistry must be taken into account. Progress is being made in the use of chemical vapor deposition for the synthesis...

Word Count : 5869

Superalloy

Last Update:

Several kinds of coating process are available: pack cementation process, gas phase coating (both are a type of chemical vapor deposition (CVD)), thermal...

Word Count : 10191

Boron

Last Update:

hardness of steels and alloys through boriding. Additionally metal borides are used for coating tools through chemical vapor deposition or physical vapor deposition...

Word Count : 12785

Hard disk drive platter

Last Update:

which is deposited onto the disk using sputtering, or using chemical vapor deposition. Silicon Nitride, PFPE and hydrogenated carbon have also been...

Word Count : 1448

Niobium

Last Update:

a thin film of niobium(V) oxide chemical vapor deposition or atomic layer deposition processes, produced by the thermal decomposition of niobium(V) ethoxide...

Word Count : 8206

Heavy metals

Last Update:

nutrients (typically iron, cobalt, and zinc), or relatively harmless (such as ruthenium, silver, and indium), but can be toxic in larger amounts or certain forms...

Word Count : 15069

Diesel fuel

Last Update:

been constructed to recover palladium, rhodium or ruthenium from nuclear wastes created by the use of nuclear fuel. Diesel fuel is often used as the main...

Word Count : 6170

Iridium

Last Update:

Iridium is a chemical element; it has symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is...

Word Count : 7838

Sulfur

Last Update:

Sulfur (also spelled sulphur in British English) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic...

Word Count : 10951

Index of chemistry articles

Last Update:

Density Deposition Derek Harold Richard Barton Deuterium diamond Diaspore Diatomite diffusion pump Diopside Diorite Dipole Discovery of the chemical elements...

Word Count : 1946

Hexafluoride

Last Update:

the production of semiconductors through the process of chemical vapor deposition. Radon hexafluoride (RnF 6), the heavier homologue of xenon hexafluoride...

Word Count : 1457

Zeolitic imidazolate framework

Last Update:

as ball-milling or chemical vapor deposition, have also been described to produce high-quality ZIF-8. Chemical vapor deposition is of particular promise...

Word Count : 4023

Tantalum

Last Update:

magnetron sputtering, chemical vapor deposition or electrochemical deposition from a eutectic molten salt solution. Natural tantalum consists of two stable isotopes:...

Word Count : 6121

Colored gold

Last Update:

oxygen-containing compounds. Plasma-assisted chemical vapor deposition process involving amorphous carbon Controlled oxidation of gold containing chromium or cobalt...

Word Count : 2170

Hafnium

Last Update:

Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles...

Word Count : 5394

Argon

Last Update:

Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most...

Word Count : 4622

Metal

Last Update:

produced in several ways, including extremely rapid cooling, physical vapor deposition, solid-state reaction, ion irradiation, and mechanical alloying. The...

Word Count : 10290

PDF Search Engine © AllGlobal.net