Global Information Lookup Global Information

Muon collider information


A Muon Collider is a proposed particle accelerator facility in its conceptual design stage that collides muon beams for precision studies of the Standard Model and for direct searches of new physics. Muons belong to the second generation of leptons, they are typically produced in high-energy collisions either naturally (for example by collisions of cosmic rays with the Earth's atmosphere) or artificially (in controlled environments using particle accelerators). The main challenge of such a collider is the short lifetime of muons.

Previous lepton colliders have all used electrons and/or their anti-particles, positrons. They offer an advantage over hadron colliders, such as the CERN-based Large Hadron Collider, in that lepton collisions are relatively "clean" thanks to being elementary particles, while hadrons, such as protons, are composite particles. Yet electron-positron colliders can't efficiently reach the same centre-of-mass energy as hadron colliders in circular accelerators due to the energy loss through synchrotron radiation.

A muon is about 206 times more massive than the electron, which reduces the amount of synchrotron radiation from a muon by a factor of about 1 billion. The reduced radiation loss enables the construction of circular colliders with much higher design energies than equivalent electron / positron colliders. This provides the unique combination of a high centre-of-mass energy and a clean collision environment that is not achievable in any other type of particle collider. It has been shown that a muon collider could achieve energies of several teraelectronvolt (TeV).[1] In particular, starting from the centre-of-mass energy of 3 TeV a muon collider is the most-energy efficient type of collider, while at 10 TeV it would have a physics reach comparable to that of the proposed 100 TeV hadron collider, FCC-hh,[2] while fitting in a ring of the size of the LHC (27 km), without the need for a much more expensive 100-km long tunnel foreseen for the Future Circular Collider. A muon collider also provides a clean and effective way to produce Higgs bosons.[3]

Muons are short-lived particles with a lifetime of 2.2 μs in their rest frame. This fact poses a serious challenge for the accelerator complex: Muons have to be accelerated to a high energy before they decay and the accelerator needs a continuous source of new muons. It also impacts the experiment design: A high flux of particles induced by the muon decay products eventually reaches the detector, requiring advanced detector technologies and event-reconstruction algorithms to distinguish these particles from collision products. The baseline muon-production method considered today is based on a high-energy proton beam impinging on a target to produce pions, which then decay to muons that have a sizeable spread of direction and energy, which needs to be reduced for further acceleration in the ring. The possibility of performing this so-called 6D cooling of muons has been demonstrated by the Muon Ionisation Cooling Experiment (MICE).[4] An alternative production method, Low Emittance Muon Accelerator (LEMMA)[5] uses a positron beam impinging on a fixed target to produce muon pairs from the electron-positron annihilation process at the threshold centre-of-mass energy. The resulting beam does not need the cooling stage, but suffers from the very low muon-production cross section, making it challenging to achieve high luminosity with the existing positron sources.

Talks were proceeding in 2009.[6][7] The first dedicated design of the accelerator complex and detector design for the centre-of-mass energies up to 3 TeV was developed within the American Muon Accelerator Program (MAP) during 2010–2015,[8][9][10][11][12] after which it the was abandoned.[13] Interest in the Muon Collider project has increased again in 2020 after the publication of the physics-reach comparison between the 1.5 TeV Muon Collider and the CLIC experiment,[14] followed by the update of the European strategy for particle physics, in which it was recommended to initiate an international design study of a Muon Collider targeting centre-of-mass energies close to 10 TeV.[15]

  1. ^ Lawrence Berkeley Laboratory Center for Beam Physics Archived 27 February 2005 at the Wayback Machine [Retrieved 2012-01-08]
  2. ^ K. R. Long, D. Lucchesi, M. A. Palmer, N. Pastrone, D. Schulte and V. Shiltsev (2021). "Muon colliders to expand frontiers of particle physics". Nature Physics. 17 (3): 289–292. arXiv:2007.15684. Bibcode:2021NatPh..17..289L. doi:10.1038/s41567-020-01130-x. S2CID 234356677.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Jadach, S.; Kycia, R.A. (April 2016). "Lineshape of the Higgs boson in future lepton colliders". Physics Letters B. 755: 58–63. arXiv:1509.02406. Bibcode:2016PhLB..755...58J. doi:10.1016/j.physletb.2016.01.065.
  4. ^ MICE collaboration (2020). "Demonstration of cooling by the Muon Ionization Cooling Experiment". Nature. 578 (7793): 53–59. Bibcode:2020Natur.578...53M. doi:10.1038/s41586-020-1958-9. PMC 7039811. PMID 32025014.
  5. ^ M. Antonelli, M. Boscolo, R. Di Nardo and P. Raimondi (2016). "Novel proposal for a low emittance muon beam using positron beam on target". Nucl. Instrum. Methods A. 807: 101–107. arXiv:1509.04454. Bibcode:2016NIMPA.807..101A. doi:10.1016/j.nima.2015.10.097. S2CID 55500891.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Eric Hand 18 November 2009 Nature 462, 260–261 (2009) [1] doi:10.1038/462260a [Retrieved 2012-01-08]
  7. ^ Fermilab The U.S. Department of Energy > MUONRD indico [Retrieved 2012-01-08 (site last modified: 30 September 2011)]
  8. ^ MAP [Retrieved 2012-01-08 (site last modified: 22 March 2011)]
  9. ^ Eddy, B. Fellenz, P. Prieto, A. Semenov, D.C. Voy, M. Wendt (Fermilab) 17 August 2011 A Wire Position Monitor System for the 1.3 GHz TESLA-style Cryomodule at the Fermilab New-Muon-Lab Accelerator. [2] [Retrieved 2012-01-08]
  10. ^ 6 March 2008 – The Neutrino Factory and Muon Collider Collaboration (NFMCC) pdf – 17 October 2011 [Retrieved 2012-01-08]
  11. ^ Yonehara, Katsuya; MTA working Group (2013). "Recent progress of RF cavity study at Mucool Test Area". Journal of Physics: Conference Series. 408 (1): 012062. arXiv:1201.5903. Bibcode:2013JPhCS.408a2062Y. doi:10.1088/1742-6596/408/1/012062. S2CID 204924736.
  12. ^ ISIS A World centre for Neutrinos and Muons [3][Retrieved 2012-01-08]
  13. ^ Dattaro, Laura (10 April 2024). "'This is our Muon Shot' | symmetry magazine". www.symmetrymagazine.org. Retrieved 11 April 2024.
  14. ^ N. Bartosik, A. Bertolin, L. Buonincontri, M. Casarsa, F. Collamati, A. Ferrari, A. Ferrari, A. Gianelle, D. Lucchesi, N. Mokhov, M. Palmer, N. Pastrone, P. Sala, L. Sestini and S. Striganov (2020). "Detector and Physics Performance at a Muon Collider". Journal of Instrumentation. 15 (5): P05001. arXiv:2001.04431. Bibcode:2020JInst..15P5001B. doi:10.1088/1748-0221/15/05/P05001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ CERN Courier Muon-collider study initiated

and 27 Related for: Muon collider information

Request time (Page generated in 0.8225 seconds.)

Muon collider

Last Update:

A Muon Collider is a proposed particle accelerator facility in its conceptual design stage that collides muon beams for precision studies of the Standard...

Word Count : 1159

Muon

Last Update:

A muon (/ˈm(j)uːɑːn/ M(Y)OO-on; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric...

Word Count : 5551

Particle accelerator

Last Update:

currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by CERN. It is a collider accelerator, which can accelerate two...

Word Count : 7686

Collider

Last Update:

particle collider projects of various types - circular and linear, colliding hadrons (proton-proton or ion-ion), leptons (electron-positron or muon-muon), or...

Word Count : 1321

Neutrino Factory

Last Update:

ambitious than the Neutrino Factory. In the Muon Collider, the muons will be inserted into a very high-energy collider ring, aiming to reach higher concentrations...

Word Count : 978

Large Hadron Collider

Last Update:

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research...

Word Count : 10683

Compact Muon Solenoid

Last Update:

The Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN...

Word Count : 4522

International Muon Ionization Cooling Experiment

Last Update:

intensity muon accelerators, for example for use as a Neutrino Factory or Muon Collider. MICE will reduce the transverse emittance of a muon beam over...

Word Count : 769

ISIS Neutron and Muon Source

Last Update:

The ISIS Neutron and Muon Source is a pulsed neutron and muon source, established 1984 at the Rutherford Appleton Laboratory of the Science and Technology...

Word Count : 1954

Collider Detector at Fermilab

Last Update:

first such detector to be installed in a hadron collider experiment), improvements to the central muon system, the addition of a vertex tracking system...

Word Count : 3309

Particle Physics Project Prioritization Panel

Last Update:

called a muon collider. Accelerating and colliding muons for particle physics studies offers theoretical advantages over an electron-positron collider, but...

Word Count : 3197

List of hypothetical technologies

Last Update:

bomb Gravitational shielding Hafnium bomb Inertia negation Monopolium Muon collider Neutronium Nuclear bullet Nuclear clock Nuclear lightbulb Nuclear shaped...

Word Count : 1686

ALICE experiment

Last Update:

251333; 6.020139 ALICE (A Large Ion Collider Experiment) is one of nine detector experiments at the Large Hadron Collider at CERN. The other eight are: ATLAS...

Word Count : 8853

Lepton

Last Update:

muon and tau lifetimes and of Z boson partial decay widths, particularly at the Stanford Linear Collider (SLC) and Large Electron–Positron Collider (LEP)...

Word Count : 4288

Neutrino

Last Update:

create neutrinos in one of three leptonic flavors: electron neutrino, ν e muon neutrino, ν μ tau neutrino, ν τ Each flavor is associated with the correspondingly...

Word Count : 13693

Particle physics

Last Update:

Tevatron, which collided protons and antiprotons and was the highest-energy particle collider on earth until the Large Hadron Collider surpassed it on...

Word Count : 4109

Mu2e

Last Update:

Mu2e, or the Muon-to-Electron Conversion Experiment, is a particle physics experiment at Fermilab in the US. The goal of the experiment is to identify...

Word Count : 1321

ATLAS experiment

Last Update:

largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN (the European Organization for Nuclear...

Word Count : 5875

Compact Linear Collider

Last Update:

Linear Collider (CLIC) is a concept for a future linear particle accelerator that aims to explore the next energy frontier. CLIC would collide electrons...

Word Count : 3956

Vernon Barger

Last Update:

Professorship. Barger has done research on collider physics phenomenology (especially related to the Large Hadron Collider), Higgs bosons, supersymmetry, and...

Word Count : 1029

CERN

Last Update:

CERN is the site of the Large Hadron Collider (LHC), the world's largest and highest-energy particle collider. The main site at Meyrin hosts a large...

Word Count : 10568

Fermilab

Last Update:

SeaQuest fixed-target experiment and Muon g-2. Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site...

Word Count : 7354

Ionization cooling

Last Update:

factory and a muon collider. Muon ionization cooling has been demonstrated for the first time by the proof of principle International Muon Ionization Cooling...

Word Count : 733

Muonium

Last Update:

studied by muon spin rotation, in which the Mu atom's spin precesses in a magnetic field applied transverse to the muon spin direction (since muons are typically...

Word Count : 593

Neutrino oscillation

Last Update:

created with a specific lepton family number ("lepton flavor": electron, muon, or tau) can later be measured to have a different lepton family number....

Word Count : 7379

Visible Light Photon Counter

Last Update:

central tracking detector of the D0 experiment, and for muon beam-cooling studies for a muon collider (MICE). They have also been evaluated for quantum information...

Word Count : 594

True muonium

Last Update:

For atoms where muons have replaced one or more electrons, see Muonic atom. For the onium of an electron and an antimuon, see muonium. In particle physics...

Word Count : 601

PDF Search Engine © AllGlobal.net