Global Information Lookup Global Information

Classical interference microscopy information


Classical interference microscopy, also called quantitative interference microscopy, uses two separate light beams with much greater lateral separation than that used in phase contrast microscopy or in differential interference microscopy (DIC).

In variants of the interference microscope where object and reference beam pass through the same objective, two images are produced of every object (one being the "ghost image"). The two images are separated either laterally within the visual field or at different focal planes, as determined by the optical principles employed. These two images can be a nuisance when they overlap, since they can severely affect the accuracy of mass thickness measurements. Rotation of the preparation may thus be necessary, as in the case of DIC.

One of the first usable interference microscopes was designed by Dyson[1] and manufactured by Cooke, Troughton & Simms (later Vickers Instruments), York England. This ingenious optical system achieved interference imaging without requiring polarizing elements in the beam path.

A later popular design involving polarizing elements was designed by Smith[2][3] and marketed first by C. Baker, London, and subsequently by the American Optical Company in the US.

The double-image problem commonly encountered with all the above-mentioned designs was completely avoided in the Mach–Zehnder interferometer design implemented by Horn, a most expensive instrument, not employing polarized light, but requiring precisely-matched duplicated objectives and condensers. With this design (marketed by E. Leitz) 60 mm beam separation was achieved in microscopy but here the new difficulty has arisen of balancing optical thicknesses of two separate microscope slide preparations (sample and dummy) and maintaining this critical balance during longer observations (e.g. time-lapse studies of living cells maintained at 37 °C), otherwise a gradual change in background interference colour occurs over time.

The main advantage offered by interference microscopy measurements is the possibility of measuring the projected dry mass of living cells, which was first effectively exploited by Andrew Huxley in studies of striated muscle cell structure and function, leading to the sliding filament model of muscle contraction. [4]

The popularity of interference microscopy peaked around 1940–1970s and fell after that because of the complexity of the instrument and difficulties in both its use and in the interpretation of image data. In recent years, the classical interference microscope (in particular the Mach–Zehnder instrument) has been "rediscovered" by biologists because its main original disadvantage (difficult interpretation of translated interference bands or complex coloured images) can now be easily surmounted by means of digital camera image recording, followed by the application of computer algorithms that rapidly deliver the processed data as false-colour images of projected dry mass.[5][6][7] Interference microscopy for industrial inspection, semiconductor inspection and surface structure analysis is highly developed and in widespread use.[8]

  1. ^ Dyson J. (1950). "An Interferometer Microscope". Proceedings of the Royal Society A. 204 (1077): 170–187. Bibcode:1950RSPSA.204..170D. doi:10.1098/rspa.1950.0167. S2CID 121877024.
  2. ^ Smith F. H. (1954). "Two Half-Shade Devices for Optical Polarizing Instruments". Nature. 173 (4399): 362–363. Bibcode:1954Natur.173..362S. doi:10.1038/173362b0. S2CID 4176399.
  3. ^ Smith F. H. (1955). "Microscopic interferometry". Research. 8: 385–395.
  4. ^ Huxley, A. F.; Niedergerke, R. (1954). "Structural changes in muscle during contraction; interference microscopy of living muscle fibres". Nature. 173 (4412): 971–973. Bibcode:1954Natur.173..971H. doi:10.1038/173971a0. PMID 13165697. S2CID 4275495.
  5. ^ Zicha, D.; Genot, E.; Dunn, G. A.; Kramer, I. M. (1999). "TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells". Journal of Cell Science. 112 (4): 447–454. doi:10.1242/jcs.112.4.447. PMID 9914157.
  6. ^ Mahlmann, Daniel M.; Jahnke, Joachim; Loosen, Peter (2008). "Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach–Zehnder double-beam interference microscope". Eur. J. Phycol. 43 (4): 355–364. doi:10.1080/09670260802168625. S2CID 84728819.
  7. ^ Kaul, R.A.; Mahlmann, D.M.; Loosen, P. (2010). "Mach–Zehnder interference microscopy optically records electrically stimulated cellular activity in unstained nerve cells". Journal of Microscopy. 240 (1): 60–74. doi:10.1111/j.1365-2818.2010.03385.x. PMID 21050214. S2CID 40054949.
  8. ^ de Groot, P (2015). "Principles of interference microscopy for the measurement of surface topography". Advances in Optics and Photonics. 7 (1): 1–65. Bibcode:2015AdOP....7....1D. doi:10.1364/AOP.7.000001.

and 26 Related for: Classical interference microscopy information

Request time (Page generated in 0.8714 seconds.)

Classical interference microscopy

Last Update:

Classical interference microscopy, also called quantitative interference microscopy, uses two separate light beams with much greater lateral separation...

Word Count : 732

Interference microscopy

Last Update:

Interference microscopy involving measurements of differences in the path between two beams of light that have been split. Types include: Classical interference...

Word Count : 40

Differential interference contrast microscopy

Last Update:

Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique...

Word Count : 1567

Microscopy

Last Update:

appreciable lateral separation of the two beams we have the case of classical interference microscopy, which does not result in relief images, but can nevertheless...

Word Count : 8317

List of types of interferometers

Last Update:

Astronomical interferometer / Michelson stellar interferometer Classical interference microscopy Bath interferometer (common path) Cyclic interferometer Diffraction-grating...

Word Count : 306

Quantum microscopy

Last Update:

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles...

Word Count : 2979

Confocal microscopy

Last Update:

Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique...

Word Count : 5298

Digital holographic microscopy

Last Update:

holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods...

Word Count : 5415

Microtome

Last Update:

for light microscopy. Glass knives are used to slice sections for light microscopy and to slice very thin sections for electron microscopy. Industrial...

Word Count : 3002

Quantum mechanics

Last Update:

modern technologies such as flash memory and scanning tunneling microscopy. As in the classical case, the potential for the quantum harmonic oscillator is...

Word Count : 12083

Interferometry

Last Update:

CSI exploits coherence to extend the range of capabilities for interference microscopy. These techniques are widely used in micro-electronic and micro-optic...

Word Count : 11112

Ptychography

Last Update:

visible-light biological microscopy, this means that cells do not need to be stained or labelled to create contrast. Although the interference patterns used in...

Word Count : 5000

Optics

Last Update:

model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics. Historically, the ray-based...

Word Count : 12848

Quantum sensor

Last Update:

utilizing entanglement, superposition, interference and squeezing to enhance sensitivity and surpass performance of classical strategies. A good example of an...

Word Count : 2463

Neurofibrillary tangle

Last Update:

mutant tau. Additionally, NFTs were clearly detected by immunoelectron microscopy at 4 months but not at 2 months. However, at both 2 and 4 months, pretangle-like...

Word Count : 2860

Photothermal optical microscopy

Last Update:

Photothermal optical microscopy / "photothermal single particle microscopy" is a technique that is based on detection of non-fluorescent labels. It relies...

Word Count : 1218

Charge density wave

Last Update:

CDW and has been directly observed in 1T-TaS2 using cryogenic electron microscopy. In 2012, evidence for competing, incipient CDW phases were reported for...

Word Count : 2952

Refractive index

Last Update:

intensity by interference with a reference beam. In the visual spectrum this is done using Zernike phase-contrast microscopy, differential interference contrast...

Word Count : 8490

RESOLFT

Last Update:

OpticaL Fluorescence Transitions, denotes a group of optical fluorescence microscopy techniques with very high resolution. Using standard far field visible...

Word Count : 1674

Evanescent field

Last Update:

objects such as biological cells or single protein and DNA molecules for microscopy (as in the total internal reflection fluorescence microscope). The evanescent...

Word Count : 3160

Matter wave

Last Update:

devices, including mirrors, atom focusing zone plates. Scanning helium microscopy uses He atom waves to image solid structures non-destructively. Quantum...

Word Count : 7562

Quantum mirage

Last Update:

the cobalt atom was only present at one focus. In scanning tunneling microscopy, an atomically sharp metal tip is advanced towards the atomically flat...

Word Count : 594

Sliding filament theory

Last Update:

Niedergerke, is titled "Interference microscopy of living muscle fibres". It was based on their study of frog muscle using interference microscope, which Andrew...

Word Count : 2657

Adaptive optics

Last Update:

communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical...

Word Count : 3113

RNA

Last Update:

MR, Kaelber JT, Park DR, Tran Q, Fox GE (August 2020). "Cryo-Electron Microscopy Visualization of a Large Insertion in the 5S ribosomal RNA of the Extremely...

Word Count : 7522

Optical coherence tomography

Last Update:

of the sample, the images are here "en-face" i.e. like images of classical microscopy: orthogonal to the light beam of illumination. More precisely, interferometric...

Word Count : 9749

PDF Search Engine © AllGlobal.net