Global Information Lookup Global Information

Plutonium information


Plutonium, 94Pu
Two shiny pellets of plutonium of about 3 cm in diameter
Plutonium
Pronunciation/plˈtniəm/ (ploo-TOH-nee-əm)
Allotropessee Allotropes of plutonium
Appearancesilvery white, tarnishing to dark gray in air
Mass number[244]
Plutonium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Sm

Pu

(Uqo)
neptunium ← plutonium → americium
Atomic number (Z)94
Groupf-block groups (no number)
Periodperiod 7
Block  f-block
Electron configuration[Rn] 5f6 7s2
Electrons per shell2, 8, 18, 32, 24, 8, 2
Physical properties
Phase at STPsolid
Melting point912.5 K ​(639.4 °C, ​1182.9 °F)
Boiling point3505 K ​(3228 °C, ​5842 °F)
Density (at 20° C)19.85 g/cm3 (239Pu)[1]
when liquid (at m.p.)16.63 g/cm3
Heat of fusion2.82 kJ/mol
Heat of vaporization333.5 kJ/mol
Molar heat capacity35.5 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1756 1953 2198 2511 2926 3499
Atomic properties
Oxidation states+2, +3, +4, +5, +6, +7, +8 (an amphoteric oxide)
ElectronegativityPauling scale: 1.28
Ionization energies
  • 1st: 584.7 kJ/mol
Atomic radiusempirical: 159 pm
Covalent radius187±1 pm
Color lines in a spectral range
Spectral lines of plutonium
Other properties
Natural occurrencefrom decay
Crystal structure ​monoclinic (mP16)
Lattice constants
Monoclinic crystal structure for plutonium
a = 0.6183 nm
b = 0.4822 nm
c = 1.0964 nm
β  = 101.79° (at 20 °C)[1]
Thermal expansion49.6×10−6/K (at 20 °C)[1]
Thermal conductivity6.74 W/(m⋅K)
Electrical resistivity1.460 µΩ⋅m (at 0 °C)
Magnetic orderingparamagnetic
Young's modulus96 GPa
Shear modulus43 GPa
Speed of sound2260 m/s
Poisson ratio0.21
CAS Number7440-07-5
History
Namingafter dwarf planet Pluto, itself named after classical god of the underworld Pluto
DiscoveryGlenn T. Seaborg, Arthur Wahl, Joseph W. Kennedy, Edwin McMillan (1940–1941)
Isotopes of plutonium
Main isotopes[2] Decay
abun­dance half-life (t1/2) mode pro­duct
238Pu trace 87.7 y[3] α 234U
SF
239Pu trace 2.411×104 y α 235U
SF
240Pu trace 6.561×103 y α 236U
SF
241Pu synth 14.329 y β 241Am
α 237U
SF
242Pu synth 3.75×105 y α 238U
SF
244Pu trace 8.00×107 y α 240U
SF
Plutonium Category: Plutonium
| references

Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous.

Plutonium was first synthetically produced and isolated in late 1940 and early 1941, by a deuteron bombardment of uranium-238 in the 1.5-metre (60 in) cyclotron at the University of California, Berkeley. First, neptunium-238 (half-life 2.1 days) was synthesized, which subsequently beta-decayed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since uranium had been named after the planet Uranus and neptunium after the planet Neptune, element 94 was named after Pluto, which at the time was considered to be a planet as well. Wartime secrecy prevented the University of California team from publishing its discovery until 1948.

Plutonium is the element with the highest atomic number known to occur in nature. Trace quantities arise in natural uranium-238 deposits when uranium-238 captures neutrons emitted by decay of other uranium-238 atoms. The heavy isotope plutonium-244 has a half-life long enough that extreme trace quantities should have survived primordially (from the Earth's formation) to the present, but so far experiments have not yet been sensitive enough to detect it.

Both plutonium-239 and plutonium-241 are fissile, meaning that they can sustain a nuclear chain reaction, leading to applications in nuclear weapons and nuclear reactors. Plutonium-240 exhibits a high rate of spontaneous fission, raising the neutron flux of any sample containing it. The presence of plutonium-240 limits a plutonium sample's usability for weapons or its quality as reactor fuel, and the percentage of plutonium-240 determines its grade (weapons-grade, fuel-grade, or reactor-grade). Plutonium-238 has a half-life of 87.7 years and emits alpha particles. It is a heat source in radioisotope thermoelectric generators, which are used to power some spacecraft. Plutonium isotopes are expensive and inconvenient to separate, so particular isotopes are usually manufactured in specialized reactors.

Producing plutonium in useful quantities for the first time was a major part of the Manhattan Project during World War II that developed the first atomic bombs. The Fat Man bombs used in the Trinity nuclear test in July 1945, and in the bombing of Nagasaki in August 1945, had plutonium cores. Human radiation experiments studying plutonium were conducted without informed consent, and several criticality accidents, some lethal, occurred after the war. Disposal of plutonium waste from nuclear power plants and dismantled nuclear weapons built during the Cold War is a nuclear-proliferation and environmental concern. Other sources of plutonium in the environment are fallout from numerous above-ground nuclear tests, which are now banned.

  1. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  2. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  3. ^ Magurno & Pearlstein 1981, pp. 835 ff.

and 21 Related for: Plutonium information

Request time (Page generated in 0.5603 seconds.)

Plutonium

Last Update:

Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed...

Word Count : 15146

Isotopes of plutonium

Last Update:

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot...

Word Count : 2622

Plutonium in the environment

Last Update:

mid-20th century, plutonium in the environment has been primarily produced by human activity. The first plants to produce plutonium for use in cold war...

Word Count : 2987

Nuclear reprocessing

Last Update:

used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the reprocessed plutonium was recycled back into...

Word Count : 9019

Manhattan Project

Last Update:

Site, in which uranium was irradiated and transmuted into plutonium. The Fat Man plutonium implosion-type weapon was developed in a concerted design and...

Word Count : 21493

Fat Man

Last Update:

was built by scientists and engineers at Los Alamos Laboratory using plutonium from the Hanford Site, and one was dropped from the Boeing B-29 Superfortress...

Word Count : 5731

Ploutonion at Hierapolis

Last Update:

(Ancient Greek: Πλουτώνειον Ploutōneion, lit "Place of Pluto"; Latin: Plutonium) or Pluto's Gate was a ploutonion (a religious site dedicated to the god...

Word Count : 932

Project Y

Last Update:

weapon using plutonium called Thin Man. In April 1944, the Los Alamos Laboratory determined that the rate of spontaneous fission in plutonium bred in a nuclear...

Word Count : 16870

Radioactive contamination from the Rocky Flats Plant

Last Update:

(primarily plutonium, americium, and uranium) contamination within and outside its boundaries. The contamination primarily resulted from two major plutonium fires...

Word Count : 9882

Nanda Devi Plutonium Mission

Last Update:

The Nanda Devi Plutonium Mission was a joint operation by the United States Central Intelligence Agency (CIA) and the Indian Intelligence Bureau (IB)...

Word Count : 737

Plutonium fluoride

Last Update:

Plutonium fluoride can refer to: Plutonium trifluoride, PuF3 Plutonium tetrafluoride, PuF4 Plutonium pentafluoride, PuF5 Plutonium hexafluoride, PuF6 This...

Word Count : 51

Plutonium pentafluoride

Last Update:

Photodissociation of gaseous plutonium hexafluoride to plutonium pentafluoride and fluorine. Plutonium pentafluoride forms a white solid. Plutonium pentafluoride is...

Word Count : 140

Radioisotope thermoelectric generator

Last Update:

space by the United States was SNAP 3B in 1961 powered by 96 grams of plutonium-238 metal, aboard the Navy Transit 4A spacecraft. One of the first terrestrial...

Word Count : 6999

Actinide

Last Update:

synthetically produced plutonium are the most abundant actinides on Earth. These have been used in nuclear reactors, and uranium and plutonium are critical elements...

Word Count : 11594

Breeder reactor

Last Update:

fission of plutonium generated within the fuel. Even with this level of plutonium consumption, light water reactors consume only part of the plutonium and minor...

Word Count : 8717

The Plutonium Files

Last Update:

The Plutonium Files: America's Secret Medical Experiments in the Cold War is a 1999 book by Eileen Welsome. It is a history of United States government-engineered...

Word Count : 1106

Albert Stevens

Last Update:

131 kBq (3.55 μCi) of plutonium without his knowledge because it was erroneously believed that he had a terminal disease. Plutonium remained present in...

Word Count : 2771

Hanford Site

Last Update:

Engineer Works and B Reactor, the first full-scale plutonium production reactor in the world. Plutonium manufactured at the site was used in the first atomic...

Word Count : 15407

Nuclear transmutation

Last Update:

plutonium can be used in plutonium–thorium fuels, with weapons-grade plutonium being the one that shows a bigger reduction in the amount of plutonium-239...

Word Count : 3226

Demon core

Last Update:

The demon core was a sphere of plutonium that was involved in two fatal radiation accidents when scientists tested it as a fissile core of an early atomic...

Word Count : 2556

Plutonian Ode

Last Update:

"Plutonian Ode" is a poem written by American Beat poet Allen Ginsberg in 1978 against the arms race and nuclear armament of the superpowers. It is heavily...

Word Count : 101

PDF Search Engine © AllGlobal.net