Global Information Lookup Global Information

Laser Interferometer Space Antenna information


Laser Interferometer Space Antenna
Artist's conception of LISA spacecraft
Mission typeGravitational waves observation
OperatorESA
Websitewww.lisamission.org
Start of mission
Launch date2035 (planned)[1]
RocketAriane 6
Launch siteKourou ELA-4
ContractorArianespace
Orbital parameters
Reference systemHeliocentric
Semi-major axis1 AU
Period1 year
Epochplanned
Cosmic Vision
← ATHENA
 

The Laser Interferometer Space Antenna (LISA) is a planned space probe to detect and accurately measure gravitational waves[2]—tiny ripples in the fabric of spacetime—from astronomical sources.[3] LISA will be the first dedicated space-based gravitational-wave observatory. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million kilometres long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.[2]

The LISA project started out as a joint effort between NASA and the European Space Agency (ESA). However, in 2011, NASA announced that it would be unable to continue its LISA partnership with the European Space Agency[4] due to funding limitations.[5] The project is a recognized CERN experiment (RE8).[6][7] A scaled-down design initially known as the New Gravitational-wave Observatory (NGO) was proposed as one of three large projects in ESA's long-term plans.[8] In 2013, ESA selected 'The Gravitational Universe' as the theme for one of its three large projects in the 2030s[9][10] whereby it committed to launch a space-based gravitational-wave observatory.

In January 2017, LISA was proposed as a candidate mission.[11] On June 20, 2017, the suggested mission received its clearance goal for the 2030s, and was approved as one of the main research missions of ESA.[12][13]

On 25 January 2024, the LISA Mission was formally adopted by ESA. This adoption recognises that the mission concept and technology are advanced enough that building the spacecraft and its instruments can commence.[14]

The LISA mission is designed for direct observation of gravitational waves, which are distortions of spacetime travelling at the speed of light. Passing gravitational waves alternately squeeze and stretch space itself by a tiny amount. Gravitational waves are caused by energetic events in the universe and, unlike any other radiation, can pass unhindered by intervening mass. Launching LISA will add a new sense to scientists' perception of the universe and enable them to study phenomena that are invisible in normal light.[15][16]

Potential sources for signals are merging massive black holes at the centre of galaxies,[17] massive black holes orbited by small compact objects, known as extreme mass ratio inspirals,[18] binaries of compact stars,[19] and possibly other sources of cosmological origin, such as a cosmological phase transition shortly after the Big Bang,[20] and speculative astrophysical objects like cosmic strings and domain boundaries.[21]

  1. ^ "Capturing the ripples of spacetime: LISA gets go-ahead". ESA. 25 January 2024. Retrieved 25 January 2024.
  2. ^ a b "eLISA, The First Gravitational Wave Observatory in Space". eLISA Consortium. Archived from the original on 5 December 2013. Retrieved 12 November 2013.
  3. ^ "eLISA, Partners and Contacts". eLISA Consortium. Archived from the original on 5 December 2013. Retrieved 12 November 2013.
  4. ^ "LISA on the NASA website". NASA. Retrieved 12 November 2013.
  5. ^ "President's FY12 Budget Request". NASA/US Federal Government. Archived from the original on 2011-03-03. Retrieved 4 Mar 2011.
  6. ^ "Recognized Experiments at CERN". The CERN Scientific Committees. CERN. Archived from the original on 13 June 2019. Retrieved 21 January 2020.
  7. ^ "RE8/LISA: The Laser Interferometer Space Antenna". The CERN Experimental Programme. CERN. Retrieved 21 January 2020.
  8. ^ Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K; Schutz, Bernard F; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (21 June 2012). "Low-frequency gravitational-wave science with eLISA/NGO". Classical and Quantum Gravity. 29 (12): 124016. arXiv:1202.0839. Bibcode:2012CQGra..29l4016A. doi:10.1088/0264-9381/29/12/124016. S2CID 54822413.
  9. ^ Selected: The Gravitational Universe ESA decides on next Large Mission Concepts Archived 2016-10-03 at the Wayback Machine.
  10. ^ "ESA's new vision to study the invisible universe". ESA. Retrieved 29 November 2013.
  11. ^ "LISA: Laser Interferometer Space Antenna" (PDF). LISA Consortium. 20 January 2017. Retrieved 14 January 2018.
  12. ^ "Europe selects grand gravity mission". BBC News. 20 June 2017.
  13. ^ "Gravitational wave mission selected, planet-hunting mission moves forward". 20 June 2017. Retrieved 20 June 2017.
  14. ^ "Capturing the ripples of spacetime: LISA gets go-ahead". ESA. European Space Agency. Retrieved 29 January 2024.
  15. ^ "eLISA: Science Context 2028". eLISA Consortium. Archived from the original on 21 October 2014. Retrieved 15 November 2013.
  16. ^ "Gravitational-Wave Detetectors Get Ready to Hunt for the Big Bang". Scientific American. 17 September 2013.
  17. ^ See sect. 5.2 in Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (17 Jan 2012). "ELISA: Astrophysics and cosmology in the millihertz regime". GW Notes. 6: 4. arXiv:1201.3621. Bibcode:2013GWN.....6....4A.
  18. ^ See sect. 4.3 in Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (17 Jan 2012). "ELISA: Astrophysics and cosmology in the millihertz regime". GW Notes. 6: 4. arXiv:1201.3621. Bibcode:2013GWN.....6....4A.
  19. ^ See sect. 3.3 in Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (17 Jan 2012). "ELISA: Astrophysics and cosmology in the millihertz regime". GW Notes. 6: 4. arXiv:1201.3621. Bibcode:2013GWN.....6....4A.
  20. ^ See sect. 7.2 in Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (17 Jan 2012). "ELISA: Astrophysics and cosmology in the millihertz regime". GW Notes. 6: 4. arXiv:1201.3621. Bibcode:2013GWN.....6....4A.
  21. ^ See sect. 1.1 in Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry (17 Jan 2012). "ELISA: Astrophysics and cosmology in the millihertz regime". GW Notes. 6: 4. arXiv:1201.3621. Bibcode:2013GWN.....6....4A.

and 23 Related for: Laser Interferometer Space Antenna information

Request time (Page generated in 0.8858 seconds.)

Laser Interferometer Space Antenna

Last Update:

The Laser Interferometer Space Antenna (LISA) is a planned space probe to detect and accurately measure gravitational waves—tiny ripples in the fabric...

Word Count : 5038

LISA Pathfinder

Last Update:

flight VV06. The mission tested technologies needed for the Laser Interferometer Space Antenna (LISA), an ESA gravitational wave observatory planned to be...

Word Count : 1621

LIGO

Last Update:

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational...

Word Count : 8339

Picometre

Last Update:

limits of possible size for fermion point particles. The Laser Interferometer Space Antenna (LISA) probe is planned for launch in 2034 to directly detect...

Word Count : 284

Lisa

Last Update:

(CLOS) Laser Interferometer Space Antenna, previously called eLISA (Evolved Laser Interferometer Space Antenna), a planned European-American Space Agency...

Word Count : 554

Big Bang Observer

Last Update:

Observer (BBO) is a proposed successor to the Laser Interferometer Space Antenna (LISA) by the European Space Agency. The primary scientific goal is the...

Word Count : 339

List of NASA cancellations

Last Update:

Observatory - 2011 Terrestrial Planet Finder - 2011 Laser Interferometer Space Antenna - 2011 Space Interferometry Mission - 2010 Mars Telecommunications...

Word Count : 186

List of proposed space telescopes

Last Update:

Large Ultraviolet Optical Infrared Surveyor Large Interferometer For Exoplanets Nautilus Deep Space Observatory Near-Earth Object Surveillance Mission...

Word Count : 1185

Primordial black hole

Last Update:

hole binaries. Gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will also probe the stochastic...

Word Count : 6198

Pink noise

Last Update:

space-borne detectors, the formerly proposed Laser Interferometer Space Antenna (LISA) and the currently proposed evolved Laser Interferometer Space Antenna...

Word Count : 6477

Elisa

Last Update:

military satellite series Evolved Laser Interferometer Space Antenna (eLISA), a proposed configuration for a space-based gravitational wave detector Elissa...

Word Count : 213

Airbus Defence and Space

Last Update:

The mission will test technologies needed for the Evolved Laser Interferometer Space Antenna (eLISA), an ESA gravitational wave observatory planned to...

Word Count : 5933

2024 in science

Last Update:

policy changes. 25 January – The Laser Interferometer Space Antenna (LISA) is given the go-ahead by the European Space Agency (ESA). It will launch in...

Word Count : 9348

Interferometry

Last Update:

Ã". NASA/Goddard Space Flight Center Scientific Visualization Studio. 2 April 2008. Retrieved 20 June 2012. "LIGO-Laser Interferometer Gravitational-Wave...

Word Count : 11100

Gravitational wave

Last Update:

joint detection with LIGO and VIRGO in 2021. A space based observatory, the Laser Interferometer Space Antenna, is currently under development by ESA. Another...

Word Count : 12635

Michelson interferometer

Last Update:

The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham...

Word Count : 4357

Astronomical interferometer

Last Update:

An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as...

Word Count : 2654

European Space Agency

Last Update:

ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.[citation needed] NASA has supported ESA's...

Word Count : 9878

Cosmic string

Last Update:

earthbound Laser Interferometer Gravitational-Wave Observatory (LIGO) and especially the space-based gravitational wave detector Laser Interferometer Space Antenna...

Word Count : 3351

Beyond Einstein program

Last Update:

next-generation X-ray space observatory Laser Interferometer Space Antenna LISA (LISA Pathfinder in 2015): a gravitational wave space observatory. The NASA...

Word Count : 453

Atom interferometer

Last Update:

and light are reversed compared to the laser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emits matter waves (the...

Word Count : 1961

Extreme mass ratio inspiral

Last Update:

gravitational wave astronomy using future space-based detectors such as the Laser Interferometer Space Antenna (LISA). If such signals are successfully...

Word Count : 3794

AM Canum Venaticorum star

Last Update:

gravitational waves, strong enough to be detected with the Laser Interferometer Space Antenna (LISA). AM CVn stars differ from most other cataclysmic variables...

Word Count : 2062

PDF Search Engine © AllGlobal.net