Global Information Lookup Global Information

V603 Aquilae information


V603 Aquilae or Nova Aquilae 1918
Location of V603 Aquilae (circled in red)
Observation data
Epoch J2000      Equinox J2000
Constellation Aquila
Right ascension 18h 48m 54.637s[1]
Declination 00° 35′ 02.86″[1]
Apparent magnitude (V) 11.64
Characteristics
Spectral type sd:Be+
B−V color index -0.2 ± 0.5
Variable type Nova
Astrometry
Radial velocity (Rv)−23 km/s
Proper motion (μ) RA: 10.81 mas/yr
Dec.: −8.86 mas/yr
Distance1,020+23
−23
 ly
(314+7
−7
[2] pc)
Absolute magnitude (MV)11.65
Other designations
Nova Aql 1918, Nova Aquilae 1918, EM* CDS 1028, HD 174107, 1RXS J184854.7+003501, ALS 9992, 1ES 1846+00.5, SBC7 706, AN 7.1918, FASTT 1189, HIP 92316, UBV M 51004, CSI+00-18463, GCRV 68659, KPD 1846+0031, 2E 1846.3+0031, LS IV +00 3, 2E 4138, GSC 00448-00423, 2MASS J18485464+0035030, EM* RJHA 116, HBHA 202-05, PLX 4341, AAVSO 1843+00.
Database references
SIMBADdata
The light curve of V603 Aquilae, from AAVSO visual band data

V603 Aquilae (or Nova Aquilae 1918) was a bright nova first observed (from Earth) in the constellation Aquila in 1918. It was the brightest "new star" to appear in the sky since Kepler's Supernova in 1604. Like all novae, it is a binary system, comprising a white dwarf and donor low-mass star in close orbit to the point of being only semidetached. The white dwarf sucks matter off its companion, which has filled its Roche lobe,[3] onto its accretion disk and surface until the excess material is blown off in a thermonuclear event.[4] This material then forms an expanding shell, which eventually thins out and disappears.[3]

First seen by Zygmunt Laskowski, a medical professor and amateur astronomer,[5] and then confirmed on the night of 8 June 1918 by the UK amateur astronomer Grace Cook,[6] Nova Aquilae reached a peak magnitude of −0.5; it was the brightest nova recorded in the era of the telescope.[4] It was brighter than all stars but Sirius and Canopus.[7] Tycho's and Kepler's supernovae were brighter, but both occurred before the invention of the telescope.[8] Originally a star system with a magnitude of 11.43, it took twelve days to fade three magnitudes and then 18.6 years to fade to quiescence.[4] In 1964 Robert P. Kraft ascertained that it was a binary system, recently[when?] determined to be true for several other novae at the time.[9]

The star system has settled to an average apparent magnitude of 11.4 since the 1940s, fading by around 1/100 of a magnitude per decade. The nova's parallax, 3.191±0.069 milliarcseconds, was measured by the Gaia spacecraft which implies a distance of 1020±23 light years.[2] Spectroscopic analysis conducted by Arenas and colleagues indicated the system consisted of a white dwarf of about 1.2 times as massive as the sun, with an accretion disk, and a companion star with about 20% of the Sun's mass.[10] This second star is most likely a red dwarf.[3] The two stars orbit each other approximately every 3 hours 20 minutes.[10]

In 1983 VLA observations detected radio emission from this nova at 5 GHz.[11] The upgraded JVLA detected 8.9 GHz emission in 2013,[12] and MeerKAT detected 1.3 GHz emission in 2019.[13] The radio emission is consistent with gyrosynchrotron, cyclotron maser and optically thick synchrotron emission.[13]

  1. ^ a b "V603 Aql". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 4 December 2020.
  2. ^ a b Schaefer, Bradley E. (December 2018). "The distances to Novae as seen by Gaia". Monthly Notices of the Royal Astronomical Society. 481 (3): 3033–3051. arXiv:1809.00180. Bibcode:2018MNRAS.481.3033S. doi:10.1093/mnras/sty2388.
  3. ^ a b c Selvelli, P. L.; Cassatella, A. (1981). "Nova AQL 1918: A Nude Old Nova". Effects of Mass Loss on Stellar Evolution. Astrophysics and Space Science Library. Vol. 89. pp. 515–522. Bibcode:1981ASSL...89..515S. doi:10.1007/978-94-009-8500-1_74. ISBN 978-94-009-8502-5. S2CID 222335225.
  4. ^ a b c Johnson, Christopher B.; Schaefer, Bradley E.; Kroll, Peter; Henden, Arne A. (2013). "Nova Aquilae 1918 (V603 Aql) Faded by 0.44 mag/century from 1938-2013". The Astrophysical Journal. 780 (2): L25. arXiv:1310.6802. Bibcode:2014ApJ...780L..25J. doi:10.1088/2041-8205/780/2/L25. S2CID 118403602.
  5. ^ The Contribution of Amateurs to Astronomy, Proceedings of Colloquium 98 of the International Astronomical Union, June 20–24, 1987, page 41
  6. ^ Mobberley, Martin (2009). Cataclysmic Cosmic Events and How to Observe Them. Springer. p. 46. ISBN 978-0-387-79946-9.
  7. ^ Moore, Patrick (2006). The Amateur Astronomer. Springer. p. 145. ISBN 978-1-84628-286-7.
  8. ^ Drechsel, H.; Holm, A.; Krautter, J. & Rahe, J. (1981). "Phase-dependent optical and ultraviolet observations of the old nova V603 Aquilae (1918)". Astronomy & Astrophysics. 99 (1): 166–72. Bibcode:1981A&A....99..166D.
  9. ^ Kraft, Robert P. (1964). "Binary stars among cataclysmic variables. III. Ten old novae". Astrophysical Journal. 139: 457–75. Bibcode:1964ApJ...139..457K. doi:10.1086/147776.
  10. ^ a b Arenas, J.; Catalán, M. S.; Augusteijn, T.; Retter, A. (2000). "A spectroscopic study of V603 Aquilae: stellar parameters and continuum-line variations". Monthly Notices of the Royal Astronomical Society. 311 (1): 135–48. Bibcode:2000MNRAS.311..135A. doi:10.1046/j.1365-8711.2000.03061.x.
  11. ^ Fuerst, E.; Benz, A.; Hirth, W.; Kiplinger, A.; Geffert, M. (January 1986). "Radio emission of cataclysmic variable stars". Astronomy and Astrophysics. 154: 377–378. Bibcode:1986A&A...154..377F. Retrieved 4 December 2020.
  12. ^ Barrett, Paul E.; Dieck, Christopher; Beasley, Anthony J.; Singh, Kulinder P.; Mason, Paul A. (November 2017). "A Jansky VLA Survey of Magnetic Cataclysmic Variable Stars. I. The Data". The Astronomical Journal. 154 (6): 252. arXiv:1702.07631. Bibcode:2017AJ....154..252B. doi:10.3847/1538-3881/aa93ff. S2CID 119055826.
  13. ^ a b Hewitt, D.M.; Pretorius, M.L.; Woudt, P.A.; Tremou, E.; Miller-Jones, J.C.A; Knigge, C.; CastroSegura, N.; Williams, D.R.A.; Fender, R.P.; Armstrong, R.; Groot, P.; Heywood, I.; Horesh, A.; vanderHorst, A.J.; Koerding, E.; McBride, V.A.; Mooley, K.P.; Rowlinson, A.; Stappers, B.; Wijers, R.A.M.J. (22 June 2020). "A MeerKAT survey of nearby nova-like cataclysmic variables". Monthly Notices of the Royal Astronomical Society. 496 (3): 2542–2557. arXiv:2006.07918. doi:10.1093/mnras/staa1747.

and 8 Related for: V603 Aquilae information

Request time (Page generated in 0.8403 seconds.)

V603 Aquilae

Last Update:

V603 Aquilae (or Nova Aquilae 1918) was a bright nova first observed (from Earth) in the constellation Aquila in 1918. It was the brightest "new star"...

Word Count : 911

Stowmarket

Last Update:

founded. On the 8 June 1918, the first UK astronomical observation of nova V603 Aquilae was made from Stowmarket by A. Grace Cook. History repeated itself on...

Word Count : 2280

Donald Howard Menzel

Last Update:

eclipse of June 8, 1918, and through observing the eruption of Nova Aquilae 1918 (V603 Aquilae). He graduated from the University of Denver in 1920 with a bachelor's...

Word Count : 2782

List of novae in the Milky Way galaxy

Last Update:

1910 OY Arae +6.0 1910 DI Lacertae +4.6 1912 DN Geminorum +3.5 1918 V603 Aquilae -0.5 1918 GI Monocerotis +5.6 1919 HR Lyrae +6.5 1919 V849 Ophiuchi +7...

Word Count : 683

1918

Last Update:

while trying to avoid her other escort, the cruiser HMS Kent. June 8 – V603 Aquilae, the brightest nova observed since Kepler's of 1604, is discovered. June...

Word Count : 10749

Zygmunt Laskowski

Last Update:

whilst his amateur astronomical studies led him to discover the supernova V603 Aquilae, which he first observed on 9 June 1918. He died in Geneva. Les procédés...

Word Count : 272

June 1918

Last Update:

Russia, during the city's occupation by the Czechoslovak Legion. The nova V603 Aquilae, the brightest observed since Kepler's Supernova of 1604, was discovered...

Word Count : 7029

List of stars in Aquila

Last Update:

transiting planet (b) V603 Aql V603 174107 92316 18h 48m 54.64s +00° 35′ 02.9″ 11.64 4.76 776 pec(NOVA) – e+cont Nova Aquilae 1918; Vmax = −1.4m, Vmin...

Word Count : 209

PDF Search Engine © AllGlobal.net