Global Information Lookup Global Information

Raman spectroelectrochemistry information


Raman spectroelectrochemistry (Raman-SEC) is a technique that studies the inelastic scattering or Raman scattering of monochromatic light related to chemical compounds involved in an electrode process. This technique provides information about vibrational energy transitions of molecules, using a monochromatic light source, usually from a laser that belongs to the UV, Vis or NIR region. Raman spectroelectrochemistry provides specific information about structural changes, composition and orientation of the molecules on the electrode surface involved in an electrochemical reaction, being the Raman spectra registered a real fingerprint of the compounds. [1][2][3][4][5][6][7]

When a monochromatic light beam samples the electrode/solution interface, most of the photons are scattered elastically, with the same energy than the incident light. However, a small fraction is scattered inelastically, being the energy of the laser photons shifted up or down. When the scattering is elastic, the phenomenon is denoted as Rayleigh scattering, while when it is inelastic it is called Raman scattering. Raman spectroscopy combined with electrochemical techniques, makes Raman spectroelectrochemistry a powerful technique in the identification, characterization and quantification of molecules.

The main advantage of Raman spectroelectrochemistry is that it is not limited to the selected solvent, and aqueous and organic solutions can be used. However, the main disadvantage is the intrinsic low Raman signal intensity. Different methods as well as new substrates were developed to improve the sensitivity and selectivity of this multirresponse technique. [4]

For researchers, a few experimental considerations related to Raman spectroelectrochemistry include electrode preparation, cell design, laser parameters, electrochemical sequence and data process.[8]

  1. ^ Lozeman, Jasper J. A.; Führer, Pascal; Olthuis, Wouter; Odijk, Mathieu (2020). "Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques". The Analyst. 145 (7): 2482–2509. Bibcode:2020Ana...145.2482L. doi:10.1039/C9AN02105A. ISSN 0003-2654. PMID 31998878.
  2. ^ Schmid, Thomas; Dariz, Petra (2019-06-14). "Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions". Heritage. 2 (2): 1662–1683. doi:10.3390/heritage2020102. ISSN 2571-9408.
  3. ^ Garoz‐Ruiz, Jesus; Perales‐Rondon, Juan Victor; Heras, Aranzazu; Colina, Alvaro (2019). "Spectroelectrochemical Sensing: Current Trends and Challenges". Electroanalysis. 31 (7): 1254–1278. doi:10.1002/elan.201900075. hdl:10259/6122. ISSN 1040-0397. S2CID 133304199.
  4. ^ a b Garoz‐Ruiz, Jesus; Perales‐Rondon, Juan V.; Heras, Aranzazu; Colina, Alvaro (2019). "Spectroelectrochemistry of Quantum Dots". Israel Journal of Chemistry. 59 (8): 679–694. doi:10.1002/ijch.201900028. hdl:10259/6123. ISSN 0021-2148. S2CID 155767924.
  5. ^ Perales-Rondon, Juan V.; Hernandez, Sheila; Martin-Yerga, Daniel; Fanjul-Bolado, Pablo; Heras, Aranzazu; Colina, Alvaro (2018). "Electrochemical surface oxidation enhanced Raman scattering". Electrochimica Acta. 282: 377–383. doi:10.1016/j.electacta.2018.06.079. hdl:10259/4832. S2CID 103005252.
  6. ^ Jorio, A; Pimenta, M A; Filho, A G Souza; Saito, R; Dresselhaus, G; Dresselhaus, M S (2003-10-16). "Characterizing carbon nanotube samples with resonance Raman scattering". New Journal of Physics. 5 (1): 139. Bibcode:2003NJPh....5..139J. doi:10.1088/1367-2630/5/1/139. ISSN 1367-2630.
  7. ^ Królikowska, Agata (2013-07-26), Wieckowski, Andrzej; Korzeniewski, Carol; Braunschweig, Björn (eds.), "Surface-Enhanced Resonance Raman Scattering (SERRS) Studies of Electron-Transfer Redox-Active Protein Attached to Thiol-Modified Metal: Case of Cytochrome c", Vibrational Spectroscopy at Electrified Interfaces, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 151–219, doi:10.1002/9781118658871.ch5, ISBN 978-1-118-65887-1
  8. ^ Zheng, Weiran (2022-10-26). "Beginner's Guide to Raman Spectroelectrochemistry for Electrocatalysis Study". Chemistry: Methods. 3 (2). doi:10.1002/cmtd.202200042. ISSN 2628-9725. S2CID 253166002.

and 7 Related for: Raman spectroelectrochemistry information

Request time (Page generated in 0.7753 seconds.)

Raman spectroelectrochemistry

Last Update:

Raman spectroelectrochemistry (Raman-SEC) is a technique that studies the inelastic scattering or Raman scattering of monochromatic light related to chemical...

Word Count : 2144

Spectroelectrochemistry

Last Update:

properties of the chemical bonds, etc. Raman spectroelectrochemistry is based on the inelastic scattering or Raman scattering of monochromatic light when...

Word Count : 1527

SOER

Last Update:

Soer-Trondelag Seur Surface-Oxidation-Enhanced Raman Scattering (SOERS), a Raman spectroelectrochemistry method Soeur (disambiguation) This disambiguation...

Word Count : 84

Electromaterials

Last Update:

spectroscopy, electrochemistry, FTIR, Raman spectroscopy or combinations of the above, such as raman spectroelectrochemistry. Metal Electrolyte Electrical conductor...

Word Count : 406

Quantum chemistry

Last Update:

dynamics Molecular geometry VSEPR theory Physical Electrochemistry Spectroelectrochemistry Photoelectrochemistry Thermochemistry Chemical thermodynamics Surface...

Word Count : 2232

Alexander Boden

Last Update:

dynamics Molecular geometry VSEPR theory Physical Electrochemistry Spectroelectrochemistry Photoelectrochemistry Thermochemistry Chemical thermodynamics Surface...

Word Count : 1206

List of chemists

Last Update:

Kuwana, (1931–2022), American chemist, founder of the field of spectroelectrochemistry Irving Langmuir (1881–1957), chemist, physicist, 1932 Nobel Prize...

Word Count : 7444

PDF Search Engine © AllGlobal.net