Global Information Lookup Global Information

Holocene extinction information


The dodo became extinct during the mid-to-late 17th century due to habitat destruction, overhunting, and predation by introduced mammals.[1] It is an often-cited example of a modern extinction.[2]

The Holocene extinction, or Anthropocene extinction,[3][4] is the ongoing extinction event caused by humans during the Holocene epoch. These extinctions span numerous families of plants[5][6][7] and animals, including mammals, birds, reptiles, amphibians, fish, and invertebrates, and affecting not just terrestrial species but also large sectors of marine life.[8] With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates[9][10][11][12][13] and is increasing.[14] During the past 100–200 years, biodiversity loss and species extinction have accelerated,[10] to the point that most conservation biologists now believe that human activity has either produced a period of mass extinction,[15][16] or is on the cusp of doing so.[17][18] As such, after the "Big Five" mass extinctions, the Holocene extinction event has also been referred to as the sixth mass extinction or sixth extinction;[19][20][21] given the recent recognition of the Capitanian mass extinction, the term seventh mass extinction has also been proposed for the Holocene extinction event.[22][23]

The Holocene extinction follows the extinction of many large (megafaunal) animals during the preceding Late Pleistocene. Some of these extinctions were likely in part due to human hunting pressure.[24][25] The most popular theory is that human overhunting of species added to existing stress conditions as the Holocene extinction coincides with human colonization of many new areas around the world. Although there is debate regarding how much human predation and habitat loss affected their decline, certain population declines have been directly correlated with the onset of human activity, such as the extinction events of New Zealand, Madagascar, and Hawaii. Aside from humans, climate change may have been a driving factor in the megafaunal extinctions, especially at the end of the Pleistocene.

Over the course of the Late Holocene, there were hundreds of extinctions of birds on islands across the Pacific, driven by human settlement of the previously uninhabited islands, with extinctions peaking around 1300 AD.[26] Roughly 12% of avian species have been driven to extinction by human activity over the last 126,000 years, which is double previous estimates.[27]

In the twentieth century, human numbers quadrupled, and the size of the global economy increased twenty-five-fold.[28][29] This Great Acceleration or Anthropocene epoch has also accelerated species extinction.[30][31] Ecologically, humanity is now an unprecedented "global superpredator",[32] which consistently preys on the adults of other apex predators, takes over other species' essential habitats and displaces them,[33] and has worldwide effects on food webs.[34] There are many famous examples of extinctions within Africa, Asia, Europe, Australia, North and South America, and on smaller islands.

Overall, the Holocene extinction can be linked to the human impact on the environment. The Holocene extinction continues into the 21st century, with human population growth,[35][36][37][38] increasing per capita consumption[10][39] (especially by the super-affluent),[40][41][42] and meat production and consumption,[43][44][45][46][47][48] among others, being the primary drivers of mass extinction. Deforestation,[43] overfishing, ocean acidification, the destruction of wetlands,[49] and the decline in amphibian populations,[50] among others, are a few broader examples of global biodiversity loss.

  1. ^ Hume, J. P.; Walters, M. (2012). Extinct Birds. London: A & C Black. ISBN 978-1-4081-5725-1.
  2. ^ Diamond, Jared (1999). "Up to the Starting Line". Guns, Germs, and Steel. W.W. Norton. pp. 43–44. ISBN 978-0-393-31755-8.
  3. ^ Wagler, Ron (2011). "The Anthropocene Mass Extinction: An Emerging Curriculum Theme for Science Educators". The American Biology Teacher. 73 (2): 78–83. doi:10.1525/abt.2011.73.2.5. S2CID 86352610.
  4. ^ Walsh, Alistair (January 11, 2022). "What to expect from the world's sixth mass extinction". Deutsche Welle. Retrieved February 5, 2022.
  5. ^ Hollingsworth, Julia (June 11, 2019). "Almost 600 plant species have become extinct in the last 250 years". CNN. Retrieved January 14, 2020. The research -- published Monday in Nature, Ecology & Evolution journal -- found that 571 plant species have disappeared from the wild worldwide, and that plant extinction is occurring up to 500 times faster than the rate it would without human intervention.
  6. ^ Guy, Jack (September 30, 2020). "Around 40% of the world's plant species are threatened with extinction". CNN. Retrieved September 1, 2021.
  7. ^ Watts, Jonathan (August 31, 2021). "Up to half of world's wild tree species could be at risk of extinction". The Guardian. Retrieved September 1, 2021.
  8. ^ Marine Extinctions: Patterns and Processes - an overview. 2013. CIESM Monograph 45 [1]
  9. ^ Ceballos, Gerardo; Ehrlich, Paul R. (8 June 2018). "The misunderstood sixth mass extinction". Science. 360 (6393): 1080–1081. Bibcode:2018Sci...360.1080C. doi:10.1126/science.aau0191. OCLC 7673137938. PMID 29880679. S2CID 46984172.
  10. ^ a b c Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (30 May 2014). "The biodiversity of species and their rates of extinction, distribution, and protection" (PDF). Science. 344 (6187): 1246752-1–1246752-10. doi:10.1126/science.1246752. PMID 24876501. S2CID 206552746. The overarching driver of species extinction is human population growth and increasing per capita consumption.
  11. ^ Cite error: The named reference Pimm-1995 was invoked but never defined (see the help page).
  12. ^ Teyssèdre, Anne (2004). Toward a sixth mass extinction crisis? Chapter 2 in Biodiversity & global change : social issues and scientific challenges. R. Barbault, Bernard Chevassus-au-Louis, Anne Teyssèdre, Association pour la diffusion de la pensée française. Paris: Adpf. pp. 24–49. ISBN 2-914935-28-5. OCLC 57892208.
  13. ^ De Vos, Jurriaan M.; Joppa, Lucas N.; Gittleman, John L.; Stephens, Patrick R.; Pimm, Stuart L. (2014-08-26). "Estimating the normal background rate of species extinction" (PDF). Conservation Biology (in Spanish). 29 (2): 452–462. Bibcode:2015ConBi..29..452D. doi:10.1111/cobi.12380. ISSN 0888-8892. PMID 25159086. S2CID 19121609.
  14. ^ Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M. (19 June 2015). "Accelerated modern human-induced species losses: Entering the sixth mass extinction". Science Advances. 1 (5): e1400253. Bibcode:2015SciA....1E0253C. doi:10.1126/sciadv.1400253. PMC 4640606. PMID 26601195. All of these are related to human population size and growth, which increases consumption (especially among the rich), and economic inequity.
  15. ^ World Wildlife Fund (September 10, 2020). "Bending the curve of biodiversity loss". Living Planet Report 2020.
  16. ^ Raven, Peter H.; Chase, Jonathan M.; Pires, J. Chris (2011). "Introduction to special issue on biodiversity". American Journal of Botany. 98 (3): 333–335. doi:10.3732/ajb.1100055. PMID 21613129.
  17. ^ Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP (2019). "Decline of the North American avifauna". Science. 366 (6461): 120–124. Bibcode:2019Sci...366..120R. doi:10.1126/science.aaw1313. PMID 31604313. S2CID 203719982.
  18. ^ Barnosky, Anthony D.; Matzke, Nicholas; Tomiya, Susumu; Wogan, Guinevere O. U.; Swartz, Brian; Quental, Tiago B.; Marshall, Charles; McGuire, Jenny L.; Lindsey, Emily L.; Maguire, Kaitlin C.; Mersey, Ben; Ferrer, Elizabeth A. (3 March 2011). "Has the Earth's sixth mass extinction already arrived?". Nature. 471 (7336): 51–57. Bibcode:2011Natur.471...51B. doi:10.1038/nature09678. PMID 21368823. S2CID 4424650.
  19. ^ Briggs, John C (October 2017). "Emergence of a sixth mass extinction?". Biological Journal of the Linnean Society. 122 (2): 243–248. doi:10.1093/biolinnean/blx063. ISSN 0024-4066.
  20. ^ Cite error: The named reference Cowie was invoked but never defined (see the help page).
  21. ^ Cite error: The named reference Strona was invoked but never defined (see the help page).
  22. ^ Rampino, Michael R.; Shen, Shu-Zhong (5 September 2019). "The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction?". Historical Biology. 33 (5): 716–722. doi:10.1080/08912963.2019.1658096. S2CID 202858078. Retrieved 7 January 2023.
  23. ^ "Seventh Mass Extinction? Severe and Deadly Event 260 Million Years Ago Discovered by Scientists". Newsweek. 9 October 2019.
  24. ^ "Without humans, the whole world could look like Serengeti". EurekAlert!. Retrieved August 16, 2020. The existence of Africa's many species of mammals is thus not due to an optimal climate and environment, but rather because it is the only place where they have not yet been eradicated by humans. The underlying reason includes evolutionary adaptation of large mammals to humans as well as greater pest pressure on human populations in long-inhabited Africa in the past.
  25. ^ Faurby, Søren; Svenning, Jens-Christian (2015). "Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns". Diversity and Distributions. 21 (10): 1155–1166. Bibcode:2015DivDi..21.1155F. doi:10.1111/ddi.12369. hdl:10261/123512. S2CID 196689979.
  26. ^ Cooke, Rob; Sayol, Ferran; Andermann, Tobias; Blackburn, Tim M.; Steinbauer, Manuel J.; Antonelli, Alexandre; Faurby, Søren (2023-12-19). "Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves". Nature Communications. 14 (1): 8116. Bibcode:2023NatCo..14.8116C. doi:10.1038/s41467-023-43445-2. ISSN 2041-1723. PMC 10730700. PMID 38114469.
  27. ^ Gemma, Conroy (December 19, 2023). "Humans might have driven 1,500 bird species to extinction — twice previous estimates". Nature. Retrieved January 16, 2024.
  28. ^ McNeill, John Robert; Engelke, Peter (2016). The Great Acceleration: An Environmental History of the Anthropocene since 1945 (1st ed.). Harvard University Press. ISBN 978-0674545038.
  29. ^ Daly, Herman E.; Farley, Joshua C. (2010). Ecological economics, second edition: Principles and applications. Island Press. ISBN 9781597266819.
  30. ^ IPBES (2019). "Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)" (PDF). Bonn, Germany: IPBES Secretariat.
  31. ^ Crist E, Kopnina H, Cafaro P, Gray J, Ripple WJ, Safina C, Davis J, DellaSala DA, Noss RF, Washington H, Rolston III H, Taylor B, Orlikowska EH, Heister A, Lynn WS, Piccolo JJ (18 November 2021). "Protecting half the planet and transforming human systems are complementary goals". Frontiers in Conservation Science. 2. 761292. doi:10.3389/fcosc.2021.761292.
  32. ^ Darimont, Chris T.; Fox, Caroline H.; Bryan, Heather M.; Reimchen, Thomas E. (21 August 2015). "The unique ecology of human predators". Science. 349 (6250): 858–860. Bibcode:2015Sci...349..858D. doi:10.1126/science.aac4249. ISSN 0036-8075. PMID 26293961. S2CID 4985359.
  33. ^ Cafaro, Philip; Hansson, Pernilla; Götmark, Frank (August 2022). "Overpopulation is a major cause of biodiversity loss and smaller human populations are necessary to preserve what is left" (PDF). Biological Conservation. 272. 109646. Bibcode:2022BCons.27209646C. doi:10.1016/j.biocon.2022.109646. ISSN 0006-3207. S2CID 250185617.
  34. ^ Fricke, Evan C.; Hsieh, Chia; Middleton, Owen; Gorczynski, Daniel; Cappello, Caroline D.; Sanisidro, Oscar; Rowan, John; Svenning, Jens-Christian; Beaudrot, Lydia (August 25, 2022). "Collapse of terrestrial mammal food webs since the Late Pleistocene". Science. 377 (6609): 1008–1011. Bibcode:2022Sci...377.1008F. doi:10.1126/science.abn4012. PMID 36007038. S2CID 251843290. Food webs underwent steep regional declines in complexity through loss of food web links after the arrival and expansion of human populations. We estimate that defaunation has caused a 53% decline in food web links globally.
  35. ^ Dasgupta, Partha S.; Ehrlich, Paul R. (19 April 2013). "Pervasive Externalities at the Population, Consumption, and Environment Nexus". Science. 340 (6130): 324–328. Bibcode:2013Sci...340..324D. doi:10.1126/science.1224664. PMID 23599486. S2CID 9503728. Retrieved 3 January 2023.
  36. ^ Cincotta, Richard P.; Engelman, Robert (Spring 2000). "Biodiversity and population growth". Issues in Science and Technology. 16 (3): 80. Retrieved 3 January 2023.
  37. ^ Maurer, Brian A. (January 1996). "Relating Human Population Growth to the Loss of Biodiversity". Biodiversity Letters. 3 (1): 1–5. doi:10.2307/2999702. JSTOR 2999702. Retrieved 3 January 2023.
  38. ^ Cockburn, Harry (March 29, 2019). "Population explosion fuelling rapid reduction of wildlife on African savannah, study shows". The Independent. Retrieved April 1, 2019. Encroachment by people into one of Africa's most celebrated ecosystems is "squeezing the wildlife in its core", by damaging habitation and disrupting the migration routes of animals, a major international study has concluded.
  39. ^ Stokstad, Erik (5 May 2019). "Landmark analysis documents the alarming global decline of nature". Science. AAAS. Retrieved 26 August 2020. For the first time at a global scale, the report has ranked the causes of damage. Topping the list, changes in land use—principally agriculture—that have destroyed habitat. Second, hunting and other kinds of exploitation. These are followed by climate change, pollution, and invasive species, which are being spread by trade and other activities. Climate change will likely overtake the other threats in the next decades, the authors note. Driving these threats are the growing human population, which has doubled since 1970 to 7.6 billion, and consumption. (Per capita of use of materials is up 15% over the past 5 decades.)
  40. ^ Cite error: The named reference Ceballos-Ehrlich-2017-05 was invoked but never defined (see the help page).
  41. ^ Wiedmann, Thomas; Lenzen, Manfred; Keyßer, Lorenz T.; Steinberger, Julia K. (2020). "Scientists' warning on affluence". Nature Communications. 11 (3107): 3107. Bibcode:2020NatCo..11.3107W. doi:10.1038/s41467-020-16941-y. PMC 7305220. PMID 32561753. The affluent citizens of the world are responsible for most environmental impacts and are central to any future prospect of retreating to safer environmental conditions . . . It is clear that prevailing capitalist, growth-driven economic systems have not only increased affluence since World War II, but have led to enormous increases in inequality, financial instability, resource consumption and environmental pressures on vital earth support systems.
  42. ^ Greenfield, Patrick (March 2, 2023). "Overconsumption by the rich must be tackled, says acting UN biodiversity chief". The Guardian. Retrieved March 2, 2023.
  43. ^ a b Cite error: The named reference WorldScientists was invoked but never defined (see the help page).
  44. ^ Cite error: The named reference BBCIPBES2019 was invoked but never defined (see the help page).
  45. ^ Carrington, Damian (February 3, 2021). "Plant-based diets crucial to saving global wildlife, says report". The Guardian. Retrieved August 5, 2021.
  46. ^ Cite error: The named reference Machovina was invoked but never defined (see the help page).
  47. ^ Cite error: The named reference Smithers was invoked but never defined (see the help page).
  48. ^ Boscardin, Livia (12 July 2016). "Greenwashing the Animal-Industrial Complex: Sustainable Intensification and Happy Meat". 3rd ISA Forum of Sociology, Vienna, Austria. ISAConf.confex.com. Retrieved 10 August 2021.
  49. ^ Elbein, Saul (December 11, 2021). "Wetlands point to extinction problems beyond climate change". The Hill. Retrieved December 12, 2021.
  50. ^ Wake, David B.; Vredenburg, Vance T. (2008-08-12). "Are we in the midst of the sixth mass extinction? A view from the world of amphibians". Proceedings of the National Academy of Sciences. 105 (Suppl 1): 11466–11473. Bibcode:2008PNAS..10511466W. doi:10.1073/pnas.0801921105. ISSN 0027-8424. PMC 2556420. PMID 18695221. The possibility that a sixth mass extinction spasm is upon us has received much attention. Substantial evidence suggests that an extinction event is underway.

and 24 Related for: Holocene extinction information

Request time (Page generated in 0.8073 seconds.)

Holocene extinction

Last Update:

The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event caused by humans during the Holocene epoch. These extinctions span...

Word Count : 22815

Timeline of extinctions in the Holocene

Last Update:

photographed in 2006. List of extinct animals Extinction event Quaternary extinction event Holocene extinction Timeline of the evolutionary history of life...

Word Count : 18521

Holocene

Last Update:

concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene is an interglacial...

Word Count : 9312

Late Pleistocene extinctions

Last Update:

The Late Pleistocene to the beginning of the Holocene saw numerous extinctions of predominantly megafaunal (typically defined as having body masses over...

Word Count : 19542

List of African animals extinct in the Holocene

Last Update:

This list of African species extinct in the Holocene covers extinctions from the Holocene epoch, a geologic epoch that began about 11,650 years before...

Word Count : 2497

Lists of extinct species

Last Update:

in the Holocene List of Madagascar and Indian Ocean Island animals extinct in the Holocene List of Macaronesian animals extinct in the Holocene List of...

Word Count : 331

List of European species extinct in the Holocene

Last Update:

This is a list of European species extinct in the Holocene that covers extinctions from the Holocene epoch, a geologic epoch that began about 11,650 years...

Word Count : 4058

List of North American animals extinct in the Holocene

Last Update:

lists. Many extinction dates are unknown due to a lack of relevant information. Holocene extinction Timeline of extinctions in the Holocene Settlement...

Word Count : 5553

Human extinction

Last Update:

Extinction event Extinction Rebellion Global catastrophic risk Great Filter Holocene extinction Speculative evolution Voluntary Human Extinction Movement World...

Word Count : 6804

Thylacine

Last Update:

2003). "Causes of extinction of vertebrates during the Holocene of mainland Australia: arrival of the dingo, or human impact?". The Holocene. 13 (6): 941–948...

Word Count : 11511

List of South American animals extinct in the Holocene

Last Update:

Holocene features animals known to have become extinct in the last 12,000 years on the South American continent. The list includes animal extinctions...

Word Count : 2144

List of Asian animals extinct in the Holocene

Last Update:

This is a list of Asian animals extinct in the Holocene that covers extinctions from the Holocene epoch, a geologic epoch that began about 11,650 years...

Word Count : 5992

List of Macaronesian animals extinct in the Holocene

Last Update:

is a list of Macaronesian animals extinct in the Holocene that covers extinctions from the Holocene epoch, a geologic epoch that began about 11,650 years...

Word Count : 1371

Extinction event

Last Update:

evolution The Sixth Extinction: An Unnatural History (nonfiction book) Timeline of extinctions in the Holocene Quaternary extinction event Biodiversity...

Word Count : 15457

Conservation biology

Last Update:

planetary extinction event. It has been suggested that an unprecedented number of species is becoming extinct in what is known as the Holocene extinction event...

Word Count : 14516

Global catastrophic risk

Last Update:

the Solar System Geoengineering Global Risks Report Great Filter Holocene extinction Impact event List of global issues Nuclear proliferation Outside...

Word Count : 5525

Extinction symbol

Last Update:

The extinction symbol represents the threat of holocene extinction on Earth; a circle represents the planet and a stylised hourglass is a warning that...

Word Count : 2340

Mammoth

Last Update:

Siberia became extinct around 10,000 years ago, during the early Holocene. The final extinction of mainland woolly mammoths may have been driven by human hunting...

Word Count : 4427

Biodiversity

Last Update:

genetic diversity. This process is often referred to as Holocene extinction, or sixth mass extinction. For example, it was estimated in 2007 that up to 30%...

Word Count : 19622

Nature

Last Update:

culminate. The present era is classified as part of a mass extinction event, the Holocene extinction event, the fastest ever to have occurred. Some, such as...

Word Count : 9245

Elephant bird

Last Update:

the northern to the southern tip of Madagascar. The late Holocene also witnessed the extinction of other Malagasy animals, including several species of...

Word Count : 3422

List of New Zealand species extinct in the Holocene

Last Update:

This is a list of New Zealand species extinct in the Holocene that covers extinctions from the Holocene epoch, a geologic epoch that began about 11,650 years...

Word Count : 4304

Decline in insect populations

Last Update:

recovery can take millions of years. Concern about a human-caused Holocene extinction has been growing since the late 20th century, although much of the...

Word Count : 8186

Aurochs

Last Update:

southern Sweden during the Holocene climatic optimum until at least 7,800 years BP. In Denmark, the first known local extinction of the aurochs occurred...

Word Count : 8483

PDF Search Engine © AllGlobal.net